摘要 | 第4-5页 |
abstract | 第5-6页 |
第一章 绪论 | 第9-19页 |
1.1 课题研究背景 | 第9-11页 |
1.1.1 集成电路的发展历程及趋势 | 第9-10页 |
1.1.2 多层铜互连全局平坦化 | 第10-11页 |
1.2 CMP技术简介 | 第11-13页 |
1.2.1 CMP技术的产生及优点 | 第11-12页 |
1.2.2 CMP技术机理简述 | 第12-13页 |
1.3 阻挡层材料的研究 | 第13-15页 |
1.3.1 阻挡层材料的引入及特性 | 第13-14页 |
1.3.2 阻挡层CMP过程 | 第14-15页 |
1.4 阻挡层平坦化亟待解决的问题 | 第15-16页 |
1.5 课题研究的主要内容及意义 | 第16-19页 |
第二章 碱性阻挡层抛光液CMP的可行性分析 | 第19-27页 |
2.1 碱性阻挡层CMP反应动力学控制过程 | 第19页 |
2.2 多层铜布线以化学作用为主的碱性CMP路线 | 第19-20页 |
2.3 碱性阻挡层抛光液各组分作用机理 | 第20-22页 |
2.3.1 磨料的作用机理 | 第20页 |
2.3.2 螯合剂的作用机理 | 第20-21页 |
2.3.3 表面活性剂的作用机理 | 第21-22页 |
2.4 碱性阻挡层抛光液CMP时各材料的去除机理 | 第22-23页 |
2.4.1 Cu的CMP机理 | 第22页 |
2.4.2 Ta的CMP机理 | 第22-23页 |
2.4.3 TEOS的CMP机理 | 第23页 |
2.5 阻挡层CMP时表面缺陷的产生机理 | 第23-27页 |
第三章 碱性阻挡层抛光液基础规律的研究 | 第27-37页 |
3.1 实验条件 | 第27-29页 |
3.1.1 实验设备 | 第27-29页 |
3.1.2 实验材料 | 第29页 |
3.1.3 实验方案 | 第29页 |
3.2 磨料质量分数对去除速率的影响规律 | 第29-31页 |
3.2.1 抛光工艺条件 | 第29-30页 |
3.2.2 实验结果及分析 | 第30-31页 |
3.3 活性剂体积分数对去除速率的影响规律 | 第31-32页 |
3.3.1 抛光工艺条件 | 第31页 |
3.3.2 实验结果及分析 | 第31-32页 |
3.4 螯合剂体积分数对去除速率的影响规律 | 第32-33页 |
3.4.1 抛光工艺条件 | 第32页 |
3.4.2 实验结果及分析 | 第32-33页 |
3.5 Cu、Ta的电化学实验研究 | 第33-36页 |
3.6 本章小结 | 第36-37页 |
第四章 基于12英寸晶圆的碱性阻挡层平坦化研究 | 第37-49页 |
4.1 实验条件 | 第37-39页 |
4.1.1 实验设备 | 第37-39页 |
4.1.2 实验材料 | 第39页 |
4.1.3 实验方案 | 第39页 |
4.2 FA/OII螯合剂对12英寸晶圆CMP的影响 | 第39-44页 |
4.2.1 不同螯合剂体积分数对速率选择比的影响 | 第39-40页 |
4.2.2 不同螯合剂体积分数对粗糙度的影响 | 第40-42页 |
4.2.3 不同螯合剂体积分数对碟形坑的影响 | 第42页 |
4.2.4 不同螯合剂体积分数对电阻的影响 | 第42-44页 |
4.3 不同抛光液配比对12英寸晶圆去除速率一致性的影响 | 第44-45页 |
4.4 碟形坑、蚀坑缺陷修正能力的检测 | 第45-47页 |
4.5 本章小节 | 第47-49页 |
第五章 结论 | 第49-51页 |
参考文献 | 第51-55页 |
攻读学位期间所取得的相关科研成果 | 第55-57页 |
致谢 | 第57页 |