Abstract | 第4-5页 |
摘要 | 第6-14页 |
List of Abbreviations | 第14-15页 |
List of Symbols | 第15-17页 |
Chapter 1 Introduction | 第17-30页 |
1.1 Robotics as an Application of Mechatronics | 第17-19页 |
1.2 Source of this Research | 第19-21页 |
1.3 Practical and Theoretical Significance of the Research | 第21-22页 |
1.4 Literature Review of Singularity of both Serial and Parallel Manipulators | 第22-24页 |
1.5 Difficulty Points,Focal Points,and Main Contributions of the Research | 第24-25页 |
1.6 Research Methodology | 第25-28页 |
1.7 Dissertation Organization | 第28-30页 |
Chapter 2 Background of Projective Geometry and Fundamental Concept of GCA | 第30-49页 |
2.1 Introduction | 第30页 |
2.2 From Vector Space to Projective Space | 第30-32页 |
2.3 Projective Geometry in three-dimensional Projective Space | 第32-33页 |
2.4 Homogeneous Coordinates and Plucker Coordinates Lines in Projective Space | 第33-35页 |
2.5 Instantaneous Screw Axis | 第35-39页 |
2.6 Fundamental Concept of Grassmann-Cayley Algebra | 第39-48页 |
2.7 Conclusion of this Chapter | 第48-49页 |
Chapter 3 Kinestatic:Global Wrench System and Twist System of Robot Manipulators based on Geometric Approach | 第49-63页 |
3.1 Introduction | 第49-50页 |
3.2 Geometric Approach to determine the Reciprocal Screws of Robot Manipulators | 第50-54页 |
3.3 Geometric Approach of Reciprocal Screws for Prismatic, Revolute and Spherical Joint | 第54-55页 |
3.4 Geometric Approach of Reciprocal Screws of Dyad Joint:R-S, P-S and P-R | 第55-58页 |
3.5 Twist Space and Wrench Space of Robot Manipulators | 第58-61页 |
3.6 Graph System of Robot Manipulators | 第61页 |
3.7 Conclusion of this Chapter | 第61-63页 |
Chapter 4 Singularity Conditions for 3-PRS PMs with Variable Actuated Joint Using Grassmann-Cayley Algebra | 第63-80页 |
4.1 Introduction | 第63-65页 |
4.2 Description and Adopted Representations of 3-PRS Parallel Manipulators | 第65-70页 |
4.3 Instantaneous Mobility Analysis of each Limb PRS based on Twist System | 第70页 |
4.4 The Global Wrench System and the Symbolic Approach of Plucker Coordinates Lines of 3-PRS Parallel Manipulators | 第70-74页 |
4.5 Singularity Conditions for 3-PRS Parallel Manipulators based on Grassmann-Cayley Algebra | 第74-77页 |
4.6 Wrench Graphs for 3-PRS PMs and for 3-PRS PMs | 第77-78页 |
4.7 Conclusion of this chapter | 第78-80页 |
Chapter 5 Singularity Condition of Wrist-Partitioned 6-R Serial Manipulator Using Grassmann-Cayley Algebra | 第80-89页 |
5.1 Introduction | 第80-82页 |
5.2 Description and Adopted Representations of a Wrist-Partitioned 6-R Serial Manipulator | 第82-85页 |
5.3 Twist System and Its Associated Graph in the Projective Space | 第85-87页 |
5.4 Superbrackets Decomposition and the Singularity Conditions of Wrist-partitioned 6-R Serial Manipulators using Grassmann-Cayley Algebra | 第87-88页 |
5.5 Conclusion of this chapter | 第88-89页 |
Chapter 6 Interpretation of all Obtained Results and Verification of the Hypothesis | 第89-96页 |
6.1 Introduction | 第89页 |
6.2 Interpretation of all Obtained Results | 第89-92页 |
6.3 Comparative Analysis and Rigidity of Framework | 第92-94页 |
6.4 Verification of the Hypothesis | 第94-95页 |
6.5 Conclusion of this Chapter | 第95-96页 |
Chapter 7 Conclusions and Overview for Future Work based on GCA | 第96-99页 |
7.1 Conclusions | 第96-98页 |
7.2 Other Applications based on GCA | 第98-99页 |
Publications related to this dissertation and Partial Fulfillment of the Requirements | 第99-100页 |
Acknowledgment | 第100-101页 |
REFERENCES | 第101-112页 |