首页--工业技术论文--自动化技术、计算机技术论文--自动化技术及设备论文--机器人技术论文--机器人论文

基于格拉斯曼—凯莱代数的机器人运动学奇异性分析

Abstract第4-5页
摘要第6-14页
List of Abbreviations第14-15页
List of Symbols第15-17页
Chapter 1 Introduction第17-30页
    1.1 Robotics as an Application of Mechatronics第17-19页
    1.2 Source of this Research第19-21页
    1.3 Practical and Theoretical Significance of the Research第21-22页
    1.4 Literature Review of Singularity of both Serial and Parallel Manipulators第22-24页
    1.5 Difficulty Points,Focal Points,and Main Contributions of the Research第24-25页
    1.6 Research Methodology第25-28页
    1.7 Dissertation Organization第28-30页
Chapter 2 Background of Projective Geometry and Fundamental Concept of GCA第30-49页
    2.1 Introduction第30页
    2.2 From Vector Space to Projective Space第30-32页
    2.3 Projective Geometry in three-dimensional Projective Space第32-33页
    2.4 Homogeneous Coordinates and Plucker Coordinates Lines in Projective Space第33-35页
    2.5 Instantaneous Screw Axis第35-39页
    2.6 Fundamental Concept of Grassmann-Cayley Algebra第39-48页
    2.7 Conclusion of this Chapter第48-49页
Chapter 3 Kinestatic:Global Wrench System and Twist System of Robot Manipulators based on Geometric Approach第49-63页
    3.1 Introduction第49-50页
    3.2 Geometric Approach to determine the Reciprocal Screws of Robot Manipulators第50-54页
    3.3 Geometric Approach of Reciprocal Screws for Prismatic, Revolute and Spherical Joint第54-55页
    3.4 Geometric Approach of Reciprocal Screws of Dyad Joint:R-S, P-S and P-R第55-58页
    3.5 Twist Space and Wrench Space of Robot Manipulators第58-61页
    3.6 Graph System of Robot Manipulators第61页
    3.7 Conclusion of this Chapter第61-63页
Chapter 4 Singularity Conditions for 3-PRS PMs with Variable Actuated Joint Using Grassmann-Cayley Algebra第63-80页
    4.1 Introduction第63-65页
    4.2 Description and Adopted Representations of 3-PRS Parallel Manipulators第65-70页
    4.3 Instantaneous Mobility Analysis of each Limb PRS based on Twist System第70页
    4.4 The Global Wrench System and the Symbolic Approach of Plucker Coordinates Lines of 3-PRS Parallel Manipulators第70-74页
    4.5 Singularity Conditions for 3-PRS Parallel Manipulators based on Grassmann-Cayley Algebra第74-77页
    4.6 Wrench Graphs for 3-PRS PMs and for 3-PRS PMs第77-78页
    4.7 Conclusion of this chapter第78-80页
Chapter 5 Singularity Condition of Wrist-Partitioned 6-R Serial Manipulator Using Grassmann-Cayley Algebra第80-89页
    5.1 Introduction第80-82页
    5.2 Description and Adopted Representations of a Wrist-Partitioned 6-R Serial Manipulator第82-85页
    5.3 Twist System and Its Associated Graph in the Projective Space第85-87页
    5.4 Superbrackets Decomposition and the Singularity Conditions of Wrist-partitioned 6-R Serial Manipulators using Grassmann-Cayley Algebra第87-88页
    5.5 Conclusion of this chapter第88-89页
Chapter 6 Interpretation of all Obtained Results and Verification of the Hypothesis第89-96页
    6.1 Introduction第89页
    6.2 Interpretation of all Obtained Results第89-92页
    6.3 Comparative Analysis and Rigidity of Framework第92-94页
    6.4 Verification of the Hypothesis第94-95页
    6.5 Conclusion of this Chapter第95-96页
Chapter 7 Conclusions and Overview for Future Work based on GCA第96-99页
    7.1 Conclusions第96-98页
    7.2 Other Applications based on GCA第98-99页
Publications related to this dissertation and Partial Fulfillment of the Requirements第99-100页
Acknowledgment第100-101页
REFERENCES第101-112页

论文共112页,点击 下载论文
上一篇:金融连续时间模型的计量检验方法--基于鞅转化的理论与实证研究
下一篇:双硅片台超精密运动控制系统的硬件平台研究