首页--工业技术论文--轻工业、手工业论文--食品工业论文--乳品加工工业论文--基础科学论文

超声和微波处理对乳蛋白浓缩水解物功能特性的影响

附表第4-5页
摘要第5-6页
ABSTRACT第6页
TABLE OF CONTENTS第7-13页
List of Figures第13-15页
List of Tables第15-17页
Abbreviations第17-18页
CHAPTER 1:Background and objectives of the study第18-38页
    1.1 General introduction第18-20页
    1.2 Modification of functional properties by processing第20-38页
        1.2.1 Enzyme hydrolysis第21-23页
        1.2.2 Ultrasound technology第23-28页
            1.2.2.1 Low frequency power ultrasound第23-24页
            1.2.2.2 Enzyme activation and microbial inactivation第24-28页
            1.2.2.3 Heat transfer第28页
            1.2.2.4 Effect of sonication on milk proteins第28页
        1.2.3 Microwave technology第28-34页
            1.2.3.1 Possible effects of microwave treatment on proteins第30-33页
                1.2.3.1.1 Thermal and non-thermal effects of microwaves第31页
                1.2.3.1.2 Thermal effects(microwave heating第31-32页
                1.2.3.1.3 Non-thermal effects of microwaves第32-33页
            1.2.3.2 Microwave Efects on Protein Structure第33-34页
            1.2.3.3 Microwave and enzyme inactivation第34页
        1.2.4 Antihypertensive and antioxidative peptides from milk proteins第34-36页
        1.2.5 Objectives of the study第36-37页
        1.2.6 Organization of the thesis第37-38页
CHAPTER 2:Effects of microwave and ultrasound pretreatments on enzymolysis of MPC with different enzymes第38-55页
    2.1. Introduction第38-39页
    2.2 Materials and methods第39-43页
        2.2.1. Materials第39页
        2.2.2 Microwave and ultrasonic pretreatments第39-41页
        2.2.3. Enzyme hydrolysis and degree of hydrolysis第41页
        2.2.4. Protein solubility第41页
        2.2.5. Sensory evaluation第41-42页
        2.2.6. ACE inhibitory activity determination第42页
        2.2.7. Kinetic parameters第42-43页
        2.2.8. Statistical analysis第43页
    2.3. Results and discussions第43-51页
        2.3.1. Effects on degree of hydrolysis第43-45页
        2.3.2. Effects on protein solubility第45-46页
        2.3.3. Effects on bitterness第46-47页
        2.3.4. Effects on ACE inhibitory activity第47-50页
        2.3.5. Kinetic parameters of enzyme hydrolysis after pretreatment第50-51页
    2.4. Conclusions第51-54页
    CONNECTING STATEMENT第54-55页
CHAPTER 3:Effect of power ultrasound pretreatment on peptidic profiles and ACE inhibition of MPC hydrolysates第55-72页
    3.1 Introduction第55-56页
    3.2 Materials and methods第56-60页
        3.2.1 Materials第56页
        3.2.2 Ultrasound pretreatment第56-57页
        3.2.3 Enzyme hydrolysis第57页
        3.2.4 Size exclusion chroma to graphy第57-58页
        3.2.5 Reverse phase high performance liquid chromatography第58-59页
        3.2.6 ACE inhibiting activity determination第59页
        3.2.7 In vitro gastrointenstinal digestion第59页
        3.2.8 In silico proteolysis第59-60页
        3.2.9 Isolation and characterization of ACE inhibitory peptides第60页
        3.2.10 Statistical analyis第60页
    3.3 Results and discussion第60-69页
        3.3.1 Degree of hydrolysis第60-62页
        3.3.2 ACE inhibitory activity第62页
        3.3.3 Linking molecular mass distribution with ACE inhibition第62-64页
        3.3.4 HPLC profiles,ACE inhibitory activity and in silico assessment第64-67页
        3.3.5 Fractionation and ACE inhibitory activity第67-68页
        3.3.6 Characterisation of ACE inhibitory peptides第68-69页
        3.3.7 Stability in gastrointestinal digestion第69页
    3.4 Conclusions第69-71页
    CONNECTING STATEMENT第71-72页
CHAPTER 4:Response surface optimisation of ACE inhibition of MPC hydrolysates in vitro after ultrasound pretreatment第72-86页
    4.1. Introduction第72-73页
    4.2. Materials and methods第73-77页
        4.2.1 Materials第73-74页
        4.2.2 Experimental design第74页
        4.2.3 Ultrasound pretreatment第74-76页
        4.2.4 Enzyme hydrolysis and degree of hydrolysis第76页
        4.2.5 Protein determination第76页
        4.2.6 ACE inhibition determination第76-77页
        4.2.7 Statistical analysis第77页
    4.3. Results and discussions第77-84页
        4.3.1 General statistics on degree of hydrolysis and ACE inhibition第77-78页
        4.3.2 Fitting of the model第78-81页
        4.3.3 Response surface plots第81-82页
        4.3.4 Optimization and validation第82-84页
    4.4. Conclusions第84-85页
    CONNECTING STATEMENT第85-86页
CHAPTER 5:Pilot scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated MPC hydrolysates第86-112页
    5.1. Introduction第86-87页
    5.2. Materials and methods第87-94页
        5.2.1 Materials第87-88页
        5.2.2 Production of peptides第88-90页
            5.2.2.1 Preparation of MPC solution第88页
            5.2.2.2 Ultrasound pretreatment第88页
            5.2.2.3 Enzyme hydrolysis第88-89页
            5.2.2.4 Ultrafiltration and nanofiltration steps第89-90页
            5.2.2.5 Spray and freeze drying第90页
        5.2.3 Analyses第90-94页
            5.2.3.1 Degree of hydrolysis第90-91页
            5.2.3.2 Protein determination第91页
            5.2.3.3 Membrane performance第91页
            5.2.3.4 ACE inhibitory activity determination第91-92页
            5.2.3.5 Determination of antioxidative activity第92页
            5.2.3.6 Size exclusion chroma to graphy第92-93页
            5.2.3.7 Reverse phase high performance liquid chromatography第93页
            5.2.3.8 Amino acid analysis第93页
            5.2.3.9 In silico analysis andbioactive peptides第93-94页
        5.2.4 Statistical analysis第94页
    5.3 Results第94-99页
        5.3.1 General observations第94页
        5.3.2 Performance of membranes during filtration第94-96页
        5.3.3 Effects of membrane separation on ACE inhibitory activity第96-97页
        5.3.4 Fractionation and antioxidative capacity第97-98页
        5.3.5 Effect of drying method on bioactivity第98-99页
        5.3.6 Fractionation and amino acid profiles第99页
    5.4. Discussion第99-110页
    5.5. Conclusions第110-111页
    CONNECTING STATEMENT第111-112页
CHAPTER 6:Effects of thermal, microwave and ultrasound pretreatments on antioxidative capacity of MPC after gastrointestinal digestion第112-133页
    6.1. Introduction第112-113页
    6.2. Materials and methods第113-116页
        6.2.1 Substrate and chemicals第113页
        6.2.2 Thermal,microwave and ultrasound pretreatments第113-114页
        6.2.3 Gastrointestinal digestion and ultrafiltration第114页
        6.2.4 Antioxidative capacity determination第114-115页
            6.2.4.1 DPPH radical scavenging activity第114-115页
            6.2.4.2 Ferric reducing antioxidative power(FRAP assay)第115页
            6.2.4.3 Total antioxidative power第115页
        6.2.5 Amino acid determination第115页
        6.2.6 Reverse Phase High Performance Liquid Chromatography(RP-HPLC)第115-116页
        6.2.7 In silico proteolysis and antioxidative peptides第116页
        6.2.8 Statistical analysis第116页
    6.3. Results第116-123页
        6.3.1 Degree of hydrolysis第116-117页
        6.3.2 Effect of pretreatments and ultrafiltration on antioxidative capacity第117-119页
        6.3.3 Amino acid profiles and antioxidative capacity第119页
        6.3.4 Peptidic profiles and structures第119-123页
    6.4. Discussion第123页
    6.5. Conclusions第123-132页
    CONNECTING STATEMENT第132-133页
CHAPTER 7:Economics of bioactive peptides production第133-141页
    7.1 Introduction第133-134页
    7.2 Materials and methods第134-138页
        7.2.1 Raw materials第134页
        7.2.2 Chemicals and reagents第134-135页
        7.2.3 Experimental第135-136页
        7.2.4. Economic evaluation第136-138页
    7.3 Results and discussion第138-140页
    7.4 Conclusions第140-141页
CHAPTER 8:Innovation points,conclusions and future direction第141-144页
    8.1 Innovation points第141页
    8.2 Major conclusions第141-143页
    8.3 Recommendations for future research第143-144页
ACKNOWLEDGMENTS第144-145页
BRIEF RESUME第145页
PUBLICATIONS第145-147页
REFERENCES第147-168页
APPENDICES第168-169页

论文共169页,点击 下载论文
上一篇:白藜芦醇抑制辐射诱导的NLRP3炎症蛋白复合体激活的机理研究
下一篇:氯化锂抑制血管平滑肌细胞增殖和迁移以及抗神经细胞损伤的分子机制研究