首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文--偏微分方程论文--非线性偏微分方程论文

非线性偏微分方程的保结构算法

摘要第4-7页
Abstract第7-10页
Chapter 1 Introduction第14-26页
    1.1 Nonlinear partial differential equation第14-17页
    1.2 Energy conservation or dissipation of evolutionary PDEs第17-19页
    1.3 Structure-preserving algorithms第19-23页
        1.3.1 Energy-preserving algorithms第20-23页
        1.3.2 Symmetric algorithms第23页
    1.4 Outline of this thesis第23-26页
Chapter 2 Energy-preserving algorithms for 1D nonlinear Hamiltonian waveequations第26-56页
    2.1 Motivation第26-29页
    2.2 Energy-conserving spatial semi discretisation第29-42页
        2.2.1 Second-order finite difference for spatial derivative第29-35页
        2.2.2 Fourth-order finite difference for spatial derivative第35-42页
    2.3 Time integrators: general AVF and general AAVF formula第42-49页
        2.3.1 General Average Vector Field method第42-44页
        2.3.2 General Adapted Average Vector Field method第44-48页
        2.3.3 The convergence of the fixed-point iteration第48-49页
    2.4 Numerical experiments第49-54页
    2.5 Conclusions and discussions第54-56页
Chapter 3 Energy-preserving algorithm for 2D nonlinear Hamiltonian waveequations第56-78页
    3.1 Motivation第56-58页
    3.2 Energy-preserving spatial discretisation第58-68页
        3.2.1 Notations and auxiliary lemmas第58-62页
        3.2.2 Fourth-order semidiscretisation, stability and convergence第62-67页
        3.2.3 Corresponding Hamiltonian ODEs第67-68页
    3.3 Time integrators: Average Vector Field formula第68-70页
    3.4 Numerical experiments第70-74页
        3.4.1 Test problem: linear wave equation第71页
        3.4.2 Simulation of 2D sine-Gordon equations第71-74页
    3.5 Conclusions and discussions第74-78页
Chapter 4 The operator-variation-of-constants formula第78-94页
    4.1 Motivation第78-80页
    4.2 Useful properties and boundedness of operators φ_j(A),j∈N第80-88页
        4.2.1 Definition of the operator-valued functions第81-83页
        4.2.2 Analysis of the boundedness第83-86页
        4.2.3 Abstract second-order ODEs and its formal solution第86-88页
    4.3 Exact energy-preserving scheme第88-91页
    4.4 Explanatory examples第91-93页
    4.5 Conclusions and discussions第93-94页
Chapter 5 Brikhoff-Hermite time integrators第94-130页
    5.1 Motivation第94-96页
    5.2 Symmetric and arbitrarily high-order time integrators第96-103页
        5.2.1 The operator-variation-of-constants formula第96-98页
        5.2.2 Formulation of the Brikhoff Hermite time integrators第98-103页
    5.3 Spatial discretisation第103-107页
    5.4 Stability of the fully discrete scheme第107-113页
        5.4.1 Linear stability analysis第109-111页
        5.4.2 Nonlinear stability analysis第111-113页
    5.5 Convergence of the fully discrete scheme第113-119页
    5.6 Waveform relaxation and its convergence第119-120页
    5.7 Numerical experiments第120-127页
    5.8 Conclusions and discussions第127-130页
Chapter 6 Lagrange collocation-type time-stepping methods第130-170页
    6.1 Motivation第130-131页
    6.2 Formulation of the Lagrange collocation-type time integrators第131-139页
        6.2.1 Construction of the time integrators第131-135页
        6.2.2 Local error analysis for the time integrators第135-139页
    6.3 Spatial discretisation第139-141页
    6.4 Nonlinear stability and convergence analysis第141-150页
        6.4.1 Analysis of the nonlinear stability第141-144页
        6.4.2 Convergence of the fully discrete scheme第144-149页
        6.4.3 The convergence of the fixed-point iteration第149-150页
    6.5 The application to 2D Dirichlet/Neumann boundary problems第150-155页
        6.5.1 2D problem with Dirichlet boundary conditions第151-152页
        6.5.2 2D problem with Neumann boundary conditions第152-154页
        6.5.3 Abstract differential formulation and spatial discretisation第154-155页
    6.6 Numerical experiments第155-166页
        6.6.1 1D problem with periodic boundary conditions第157-161页
        6.6.2 Simulation of 2D sine-Gordon equation第161-166页
    6.7 Conclusions and discussions第166-170页
Bibliography第170-184页
Awards, foundations and publications第184-188页
Acknowledgments第188-189页

论文共189页,点击 下载论文
上一篇:Charming空间及相关空间的研究
下一篇:八年级学生学习平行四边形的认知障碍分析