首页--交通运输论文--铁路运输论文--车辆工程论文--一般性问题论文--车体构造及设备论文--走行部分论文

高速铁路车轮钢磨损和滚动接触疲劳性能的改善方法研究

摘要第9-11页
Abstract第11-12页
Chapter 1 Introduction第17-34页
    1.1 Research background and significance第17页
    1.2 Wheel materials第17-19页
        1.2.1 Strengthening mechanism of ferrite-pearlite steel第17-18页
        1.2.2 Wheel steels used on Chinese high-speed train第18-19页
    1.3 Review of railway wheel damages第19-32页
        1.3.1 Wear第19-22页
        1.3.2 Mechanically induced RCF第22-29页
        1.3.3 Thermally induced RCF第29-30页
        1.3.4 Relationship between wear and RCF第30-32页
    1.4 The contents of this dissertation第32页
    1.5 Research object and plan第32-34页
Chapter 2 Optimization of strength and toughness of railway wheel steel by alloy design第34-50页
    2.1 Alloy design第35页
    2.2 Experimental第35-37页
        2.2.1 Materials第35-36页
        2.2.2 Microstructural characterization第36页
        2.2.3 Mechanical properties第36-37页
    2.3 Results and discussions第37-48页
        2.3.1 Microstructure第37-42页
        2.3.2 Mechanical properties第42-48页
    2.4 Conclusions第48-50页
Chapter 3 Effect of different strengthening methods on rolling/sliding wear of ferrite-pearlite steel第50-68页
    3.1 Materials and experiment第51-53页
        3.1.1 Materials第51页
        3.1.2 Experiment第51-53页
        3.1.3 Observation of microstructures and hardness第53页
    3.2 Results第53-61页
        3.2.1 Microstructure and bulk hardness第53-56页
        3.2.2 Wear behavior第56-57页
        3.2.3 Subsurface microstructure第57-59页
        3.2.4 Strain hardening behavior第59-61页
    3.3 Discussions第61-67页
        3.3.1 Strengthened mechanisms, microstructure and bulk hardness第61-64页
        3.3.2 Worn surface hardness and wear resistance第64-66页
        3.3.3 Strengthened mechanisms and worn surface hardness第66-67页
    3.4 Conclusions第67-68页
Chapter 4 Investigation on surface initiated and thermally induced RCF for HiSi wheel steel第68-89页
    4.1 Materials第69页
    4.2 WEL reproduction第69-77页
        4.2.1 Test method第69-71页
        4.2.2 Results and discussions第71-74页
        4.2.3 Effect of materials on WEL formation第74-77页
    4.3 RCF behaviors第77-84页
        4.3.1 Test method第77页
        4.3.2 Results第77-84页
    4.4 Elastic-plastic analyses第84-85页
    4.5 Results and discussions第85-88页
        4.5.1 Crack initiation at WEL surface第85-87页
        4.5.2 Crack propagation along the deformed material第87-88页
    4.6 Conclusions第88-89页
Chapter 5 Influence of laser dispersed treatment on resistance to wear and surface initiated rolling contact fatigue of railway wheel steel第89-101页
    5.1 Experimental procedure第89-91页
        5.1.1 Materials第89-90页
        5.1.2 Wear tests第90页
        5.1.3 RCF tests第90-91页
    5.2 Results第91-99页
        5.2.1 Microstructures and hardness第91-93页
        5.2.2 Wear test result第93-96页
        5.2.3 RCF test result第96-99页
    5.3 Discussion第99-100页
        5.3.1 Influence of LDT on wear resistance第99-100页
        5.3.2 Influence of LDT on RCF resistance第100页
    5.4 Conclusions第100-101页
Chapter 6 Effect of micro-inclusion on RCF initiated at subsurface and deep defects forrailway wheel第101-119页
    6.1 Evaluation method and experiment第102-104页
        6.1.1 Method第102页
        6.1.2 Experiment第102-104页
    6.2 Results第104-109页
        6.2.1 Microstructure and microhardness of pre-treated fatigue specimen第104-105页
        6.2.2 Risk volume of fatigue specimen第105-106页
        6.2.3 Inclusion sizes第106-109页
    6.3 Discussions第109-113页
        6.3.1 Effect of pre-treatment on fracture behaviors of fatigue specimen第109-110页
        6.3.2 Effect of pre-treatment on the inclusion size第110-111页
        6.3.3 Comparison of the inclusion sizes obtained by different methods第111页
        6.3.4 Validation of the fatigue method第111-113页
    6.4 Application第113-118页
        6.4.1 Prediction of the maximum micro-inclusion size in full-scale wheel第113-114页
        6.4.2 Effect of micro-inclusions on subsurface initiated RCF第114-118页
    6.5 Conclusions第118-119页
Conclusions第119-122页
Acknowledgements第122-123页
References第123-137页
Publications and research results第137-138页

论文共138页,点击 下载论文
上一篇:基于2D-3D图像非刚性配准方法的研究
下一篇:参数激励驱动微陀螺振动系统的非线性振动特性和时滞反馈控制研究