首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文--偏微分方程的数值解法论文

极坐标下Helmholtz方程的高阶紧致差分方法研究

摘要第1-5页
ABSTRACT(英文摘要)第5-7页
第一章 绪论第7-10页
   ·研究的背景与意义第7页
   ·国内外研究现状第7-9页
   ·本文的主要工作第9-10页
第二章 一维Helmholtz方程的求解第10-19页
   ·一维连续问题第10-14页
     ·问题描述第10页
     ·四阶紧致差分格式第10-12页
     ·数值算例第12-14页
   ·波数为分段常数的一维问题第14-18页
     ·问题描述第14-15页
     ·界面处四阶紧致差分格式第15-17页
     ·数值算例第17-18页
   ·本章小结第18-19页
第三章 二维Helmholtz方程的求解第19-33页
   ·二维连续问题第19-25页
     ·问题描述第19页
     ·四阶紧致差分格式第19-22页
     ·数值算例第22-25页
   ·波数为分段常数的二维问题第25-32页
     ·问题描述第25-26页
     ·界面处四阶紧致差分格式第26-29页
     ·数值算例第29-32页
   ·本章小结第32-33页
第四章 结论与展望第33-34页
   ·结论第33页
   ·展望第33-34页
参考文献第34-37页
致谢第37-38页
个人简介第38页

论文共38页,点击 下载论文
上一篇:关于神经网络与样条函数的逼近性能研究
下一篇:分数阶积分微分方程的无网格重心插值配点法