首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文--自动推理、机器学习论文

半监督深度模糊C均值聚类与分类

摘要第5-6页
ABSTRACT第6-7页
List of Abbreviations第13-20页
Chapter 1 Introduction第20-38页
    1.1. Semi-supervised Learning第24-26页
    1.2. Clustering第26-27页
    1.3. Feature Learning第27-29页
    1.4. Class Imbalance Problem第29-30页
    1.5. Multi-Class Problem第30-32页
    1.6. Comparison between FCM and DFCM第32页
    1.7. Motivations第32-35页
        1.7.1. Motivation of Semi-Supervised DFCM Clustering for Software FaultPrediction第32-33页
        1.7.2. Motivation of the Empirical study of Semi-Supervised DFCM Clustering forSoftware Fault Prediction第33-34页
        1.7.3. Motivation of Semi-Supervised DFCM Clustering for Imbalanced Multi-classClassification第34-35页
    1.8. Contributions第35-37页
        1.8.1. Contribution of Semi-Supervised DFCM Clustering for Software FaultPrediction第35页
        1.8.2. Contribution of the Empirical study of Semi-Supervised DFCM Clustering forSoftware Fault Prediction第35-36页
        1.8.3. Contribution of Semi-Supervised DFCM Clustering for Imbalanced Multi-class Classification第36-37页
    1.9. Organization第37-38页
Chapter 2 Semi-Supervised Deep Fuzzy C-Mean Clustering For Software Fault Prediction第38-66页
    2.1. Introduction第38-39页
        2.1.1. Motivation第39页
    2.2. Semi-supervised Deep Fuzzy C-Mean Clustering第39-46页
        2.2.1. Framework of Our Approach第39-40页
        2.2.2. Theoretical Description of Proposed Approach第40-43页
        2.2.3. Convergence of Proposed Approach第43-46页
    2.3. Experiments第46-63页
        2.3.1. Data Preparation第46-47页
        2.3.2. Performance Measure第47页
        2.3.3. Experimental Design第47-49页
        2.3.4. Experimental Results and Analysis第49-61页
        2.3.5. Statistical Analysis第61-63页
    2.4. Threats to Validity第63-64页
        2.4.1. Construct Validity第63页
        2.4.2. Internal Validity第63页
        2.4.3. External Validity第63-64页
    2.5. Chapter Summary第64-66页
Chapter 3 The Empirical study of Semi-Supervised Deep Fuzzy C-Mean Clustering for Software Fault Prediction第66-92页
    3.1. Introduction第66-67页
        3.1.1. Motivation第66-67页
    3.2. Empirical Study of Semi-Supervised Deep Fuzzy-C Means Clustering第67-70页
        3.2.1. Framework of Our Approach第67-68页
        3.2.2. Theoretical Description of Proposed Approach第68-70页
    3.3. Experiments第70-88页
        3.3.1. Research Questions第71页
        3.3.2. Data Preparation第71-72页
        3.3.3. Performance Measure第72-73页
        3.3.4. Experimental Design第73-76页
        3.3.5. Experimental Result and Analysis第76-88页
    3.4. Threats to Validity第88-90页
        3.4.1. External Validity第88-89页
        3.4.2. Internal Validity第89页
        3.4.3. Construct Validity第89-90页
    3.5. Chapter Summary第90-92页
Chapter 4 Semi-Supervised Deep Fuzzy C-Mean Clustering for Imbalanced Multi-class Classification第92-116页
    4.1. Introduction第92-93页
        4.1.1. Motivation第92-93页
    4.2. Semi-Supervised Deep Fuzzy C-Mean Clustering for imbalanced Multi-Class Classification (DFCM-MC)第93-97页
        4.2.1. Framework of Our Approach第93页
        4.2.2. Theoretical Description of Proposed Approach第93-97页
    4.3. Experiments第97-113页
        4.3.1. Data Preparation第97-98页
        4.3.2. Performance Measure第98-100页
        4.3.3. Experimental Setup第100页
        4.3.4. Statistical Tests第100-101页
        4.3.5. Results & Analysis第101-113页
    4.4. Threats to Validity第113-115页
        4.4.1. Construct Validity第113-114页
        4.4.2. Internal Validity第114页
        4.4.3. External Validity第114页
        4.4.4. Statistical Validity第114-115页
    4.5. Chapter Summary第115-116页
Chapter 5 Concluding Remarks and Future Work第116-118页
    5.1. Concluding Remarks第116-117页
    5.2. Future work第117-118页
References第118-128页
Acknowledgements第128-130页
Bibliography第130-131页

论文共131页,点击 下载论文
上一篇:从女性主义翻译角度看《简·爱》的四个中译本
下一篇:论德国功能学派翻译理论在中国的应用