致谢 | 第3-4页 |
摘要 | 第4-5页 |
ABSTRACT | 第5-6页 |
1 绪论 | 第9-13页 |
1.1 课题研究背景和意义 | 第9页 |
1.2 国内外研究现状 | 第9-11页 |
1.3 本文的研究内容 | 第11页 |
1.4 本文的组织结构 | 第11-13页 |
2 标准粒子群算法 | 第13-19页 |
2.1 算法原理 | 第13-14页 |
2.1.1 标准粒子群算法介绍 | 第13-14页 |
2.1.2 标准粒子群算法的基本参数介绍 | 第14页 |
2.1.3 全局版本的PSO与局部版本的PSO | 第14页 |
2.2 标准粒子群算法 | 第14-15页 |
2.3 标准粒子群算法的算法流程 | 第15-16页 |
2.4 粒子群算法的收敛性分析 | 第16-18页 |
2.5 标准粒子群算法的缺点 | 第18-19页 |
3 基于邻居适应值的改进粒子群算法研究 | 第19-27页 |
3.1 改进思路 | 第19页 |
3.2 基于邻居适应值的改进粒子群算法 | 第19-20页 |
3.3 实验结果和讨论 | 第20-25页 |
3.3.1 测试函数 | 第20-22页 |
3.3.2 测试函数三维图像 | 第22-23页 |
3.3.3 仿真实验 | 第23-25页 |
3.4 结论 | 第25-27页 |
4 基于邻居适应值策略与全面学习策略的混合学习粒子群算法研究 | 第27-35页 |
4.1 改进思路 | 第27页 |
4.2 全面学习粒子群算法 | 第27-29页 |
4.3 基于邻居适应值策略与全面学习策略混合学习粒子群算法 | 第29-30页 |
4.4 仿真实验 | 第30-32页 |
4.5 结论 | 第32-35页 |
5 基于邻居适应值策略与动态锦标赛策略的混合学习粒子群算法研究 | 第35-41页 |
5.1 改进思路 | 第35页 |
5.2 基于动态锦标赛粒子群算法的介绍 | 第35-37页 |
5.3 基于邻居适应值策略与动态锦标赛策略的混合学习粒子群算法 | 第37-38页 |
5.4 仿真实验 | 第38-40页 |
5.5 结论 | 第40-41页 |
总结与展望 | 第41-43页 |
参考文献 | 第43-47页 |
作者简介 | 第47-49页 |