首页--社会科学总论论文--统计学论文--统计方法论文

Discrete Particles Swarm Optimization Algorithm for Uniform Design Construction

ACKNOWLEDGEMENT第5-6页
Abstract第6-8页
摘要第9-16页
List of Abbreviations第16-17页
CHAPTER ONE:INTRODUCTION第17-21页
    1.1 Background Information第17-19页
    1.2 Statement of the problem第19页
    1.3 Objectives第19页
        1.3.1 General objective第19页
        1.3.2 Specific objectives第19页
    1.4 Research Questions第19-20页
    1.5 Justification of the study第20-21页
CHAPTER TWO: LITERATURE REVIEW第21-64页
    2.0 Introduction第21页
    2.1 Design of Experiment第21-25页
        2.1.1 Basic terms used in Experimental Designs第22-24页
        2.1.2 Basic Principles of Experimental Designs第24-25页
        2.1.3 Factorial Designs第25页
    2.2 Uniform Design第25-39页
        2.2.1 Uniform design as a space filling design第25页
        2.2.2 Uniformity criterion: the discrepancy第25-39页
            2.2.2.1 The Star Discrepancy第27-28页
            2.2.2.2 The Local Discrepancy第28-31页
            2.2.2.3 The Centered L_2 discrepancy第31-33页
            2.2.2.4 The wrap-around L_2 discrepancy第33-36页
            2.2.2.5 The Mixture Discrepancy第36-38页
            2.2.2.6 Symmetric discrepancy第38-39页
    2.3 Construction of Uniform Design第39-42页
    2.4 Optimization第42-58页
        2.4.1 Classification of Optimization Problems第43-45页
            2.4.1.1 Constrained Optimization第43-44页
            2.4.1.2 Unconstrained Optimization第44页
            2.4.1.3 Dynamic Optimization第44-45页
            2.4.1.4 Least Square Optimization第45页
        2.4.2 Optimization Techniques第45-47页
            2.4.2.1 Local Optimization第45-46页
            2.4.2. 2 Global Optimization第46-47页
        2.4.3 Optimization Algorithms第47-56页
            2.4.3.1 Local search algorithm第47-49页
            2.4.3.2 Simulating annealing第49-50页
            2.4.3.3 Genetic algorithm第50-51页
            2.4.3.4 Stochastic evolutionary algorithms第51-52页
            2.4.3.5 Threshold accepting第52-56页
        2.4.4 To Generate Symmetrical And Asymmetrical Uniform Designs From U(n;n~s)第56-57页
        2.4.5 Uniform Designs with large n第57-58页
    2.5 Particle Swarm Optimization第58-62页
        2.5.1 The particle swarm algorithm第59-62页
            2.5.1.1 Global best PSO第60-61页
            2.5.1.2 Local best PSO第61-62页
    2.6 Discrete particle swarm optimization第62-64页
CHAPTER THREE:METHODOLOGY第64-77页
    3.1 Discrete particle swarm optimization for the designs matrices第64-77页
        DPSO FLOW CHART第66-67页
        3.1.1 Initialization第67-68页
        3.1.2 The function value第68-69页
        3.1.3 The learning process第69-71页
        3.1.4 Accepting strategy第71-72页
        3.1.5 Update process第72-77页
CHAPTER FOUR: NUMERICAL RESULTS第77-88页
    4.0 Introduction第77页
    4.1 The number of designs in the design space第77-78页
    4.2 Parameters used in the swarm第78-82页
        4.2.1 The number of initial particles in the swarm第78-79页
        4.2.2 The number of iterations第79-81页
        4.2.3 probR第81页
        4.2.4 The constants p and g第81-82页
    4.3 Comparison with TA第82-83页
        4.3.1 under WD第82页
        4.3.2 under CD第82-83页
        4.3.3 under SD第83页
    4.4 Asymmetric and symmetric designs第83-85页
    4.5 for large n第85页
    4.6 Special cases (orthogonality)第85-88页
        4.6.1 use of orthogonal array for multilevel designs第86-87页
        4.6.2 orthogonal and nearly orthogonal Latin hypercube designs for high levelled designs第87-88页
CHAPTER FIVE:CONCLUSION AND DISCUSSION第88-90页
Future work第90-91页
APPENDIX第91-98页
References第98-100页

论文共100页,点击 下载论文
上一篇:电子信息产业逆向创新关键成功因素研究
下一篇:IT行业变革型领导与员工工作幸福感的关系研究