首页--数理科学和化学论文--运筹学论文--最优化的数学理论论文

基于矩量理论和Sum-of-Squares最优化理论的吸引域估计

摘要第1-6页
ABSTRACT第6-9页
第一章 绪论第9-13页
   ·研究背景及其现状第9-11页
   ·论文组织结构第11-13页
第二章 预备知识第13-23页
   ·矩问题第13-14页
   ·LMI凸优化方法第14-16页
   ·Sum-of-Squares多项式第16-19页
     ·SOS多项式概念及性质第16-18页
     ·SOS在控制中应用第18-19页
   ·Lyapunov稳定性第19-21页
   ·吸引域估计转化为最优化问题第21-23页
第三章 基于矩量理论求解非线性自治系统的吸引域第23-35页
   ·引言第23-24页
   ·基本知识和主要结论第24-26页
   ·无约束全局最优化第26-28页
   ·含有约束最优化第28-31页
     ·主要结论第28-30页
     ·吸引域估计的原问题Q_K~N算法第30页
     ·吸引域估计的对偶问题(Q_K~N)~*算法第30-31页
   ·仿真实例第31-33页
   ·小结第33-35页
第四章 基于SOS最优化理论的吸引域估计第35-43页
   ·预备知识第35-36页
   ·吸引域估计第36-39页
   ·仿真实例第39-41页
   ·小结第41-43页
第五章 一类SIR传染病模型的吸引域估计第43-51页
   ·模型的建立及平衡点的稳定性第43-44页
   ·吸引域估计第44-48页
     ·基于矩量理论吸引域估计第44-47页
     ·基于SOS最优化算法的吸引域估计第47-48页
   ·仿真结果及分析第48-49页
   ·小结第49-51页
第六章 总结与展望第51-53页
   ·本文工作总结第51页
   ·未来工作展望第51-53页
参考文献第53-57页
作者攻读硕士学位期间发表的论文及获奖情况第57-59页
致谢第59页

论文共59页,点击 下载论文
上一篇:极值理论在操作风险模型中的应用
下一篇:基于多目标遗传算法求解Steiner树问题