首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文--常微分方程的数值解法论文

具有多项式非线性项的四阶常微分方程的数值解法

ABSTRACT第7页
摘要第8-15页
List of Abbreviations and Notations第15-16页
1 Introduction第16-25页
    1.1 Background and Significance of Study第16-21页
        1.1.1 Classical Models for Fourth-Order ODEs第16-19页
        1.1.2 History of Multiple Solutions第19-21页
    1.2 Methods for Solving Fourth-Order ODEs第21-22页
    1.3 Statement of the Problem and Motivation第22页
    1.4 Objectives of the Study第22-23页
    1.5 Organization of the Thesis第23-25页
2 An Overview of the Numerical Methods第25-36页
    2.1 Traditional Discretization Methods for Differential Equations第25-29页
        2.1.1 Finite Differences Method第25-26页
        2.1.2 Finite Elements Method第26-27页
        2.1.3 Boundary Element Method第27-28页
        2.1.4 Eigenfunction Expansion Method第28-29页
    2.2 Solving System of Polynomial Equations第29-33页
        2.2.1 Newton's Method第31-32页
        2.2.2 Homotopy Continuation Method第32-33页
    2.3 Concepts from Functional Analysis第33-36页
3 Eigenfunction Expansion Descretization and Error Estimation第36-53页
    3.1 Discretization of Fourth-Order ODEs by Eigenfunction Expansion Method第36-46页
        3.1.1 Fourth-Order ODEs with Simply Supported Boundary Conditions第36-40页
        3.1.2 Fourth-Order ODEs with Nonhomogeneous Simply Supported Boundary Con-ditions第40-42页
        3.1.3 Fourth-Order ODEs with Cantilever Boundary Conditions第42-43页
        3.1.4 Fourth-Order ODEs with Nonhomogeneous Cantilever Boundary Conditions第43-45页
        3.1.5 Fourth-Order ODEs with Three-point Boundary Conditions第45-46页
    3.2 Error Analysis of the Eigenfunction Expansion Method第46-50页
    3.3 Numerical Experiments第50-53页
4 Extension Homotopy Method for Solving the EEM Descretized Problem第53-67页
    4.1 Introduction第53-55页
    4.2 Construction of the Extension Homotopy第55-57页
    4.3 Filters for Removing Spurious Solutions第57-58页
        4.3.1 The Finite Difference Filter第57-58页
        4.3.2 The Newton Method Filter第58页
    4.4 Numerical Experiments第58-65页
        4.4.1 Efficiency of the Extension Homotopy第58-65页
    4.5 Conclusions of this Chapter第65-67页
5 Symmetric Homotopy Method for Solving the EEM Descretized Problem第67-86页
    5.1 Introduction第67-70页
    5.2 Symmetry Group for the Solution Set of the Discretized Problem第70-74页
    5.3 Construction of the Symmetric Homotopy第74-78页
        5.3.1 The Symmetric Homotopy for Cubic Polynomial Nonlinearity第75-76页
        5.3.2 The Additional Symmetry for Odd Cubic Nonlinearity第76页
        5.3.3 The Symmetric Homotopy for Quintic Polynomial Nonlinearity第76-77页
        5.3.4 The Additional Symmetry for Odd Quintic Nonlinearity第77-78页
    5.4 Numerical Experiments第78-85页
    5.5 Conclusions of this Chapter第85-86页
6 Summary and Further Research第86-89页
    6.1 Summary第86-87页
    6.2 Future Research第87-89页
References第89-101页
Published Academic Articles during PhD period第101-102页
Acknowledgements第102-103页
Author Information第103页

论文共103页,点击 下载论文
上一篇:基于Web的生物大分子3D结构局部观察的可视化系统
下一篇:瑕疵国际商事仲裁协议效力认定问题研究