首页--农业科学论文--农作物论文--禾谷类作物论文--麦论文--小麦论文

小麦ABA受体基因TaPYL3的克隆和功能分析

摘要第6-7页
abstract第7-8页
LIST OF ABBREVIATION第15-17页
Chapter 1 Introduction第17-26页
    1.1 Wheat domestication and evolution第17页
    1.2 Wheat importance and production第17页
    1.3 Impact of abiotic stresses in crops第17-18页
    1.4 Wheat plants strategies to tackle drought stress第18-19页
    1.5 ABA hormone and its role under abiotic stress第19-20页
    1.6 ABA receptors in plants第20-21页
    1.7 Structure and function of PYL第21-22页
    1.8 Role of PYL in ABA signaling pathway第22页
    1.9 Role of PYL in gene expression and transcriptional responses under abiotic stress第22-24页
    1.10 Significance of research work第24页
    1.11 Research objective第24-26页
Chapter 2 TaPYL3 expression and bioinformatics analyses第26-41页
    2.1 Introduction to Quantitative Real-Time PCR第26-27页
        2.1.1 Gene regulation pattern in PYL receptors第26页
        2.1.2 Bioinformatics analysis in gene families第26-27页
        2.1.3 Research objectives第27页
    2.2 Materials and methods第27-30页
        2.2.1 Plant materials第27页
        2.2.2 Treatment and conditions第27页
        2.2.3 RNA extraction第27-28页
        2.2.4 Quantification of RNA on nano-drop spectrophotometer第28页
        2.2.5 c DNA synthesis第28-29页
        2.2.6 Quantitative real-time PCR (q RT- PCR)第29页
        2.2.7 Primers designed for gene expression analyses by q RT-PCR第29-30页
        2.2.8 Sequence analysis and alignment of Ta PYL3第30页
        2.2.9 Phylogenetic tree construction第30页
    2.3 Results第30-38页
        2.3.1 Ta PYL3 sequence alignment第30-33页
        2.3.2 Phylogenetic analysis第33-34页
        2.3.3 Ta PYL3 response to PEG treatment第34页
        2.3.4 Ta PYL3 response to Na Cl treatment第34-35页
        2.3.5 Ta PYL3 response to cold treatment第35-36页
        2.3.6 Ta PYL3 response to heat stress第36-38页
        2.3.7 Ta PYL3 response to ABA treatment第38页
    2.4 Discussion第38-40页
    2.5 Conclusion第40-41页
Chapter 3 Abiotic stress tolerance in transgenic Arabidopsis第41-59页
    3.1 Introduction第41-42页
        3.1.1 Phenotypes of transgenic plants under abiotic stress第41-42页
    3.2 Materials and Methods第42-53页
        3.2.1 Transgenic plant material cultivation第42页
        3.2.2 Isolation of Ta PYL3 candidate sequence第42页
        3.2.3 Primers used第42页
        3.2.4 Extraction of wheat genomic DNA第42-43页
        3.2.5 PCR and agarose gel electrophoresis第43页
        3.2.6 Purification of PCR product第43-44页
        3.2.7 Cloning and heat shock transformation第44页
        3.2.8 Heat shock transformation protocol第44-45页
        3.2.9 Colony PCR to confirm the positive plasmid with gene insert第45页
        3.2.10 Plasmid extraction第45-46页
        3.2.11 Plasmid DNA sequencing第46-48页
        3.2.12 PCR for generating plasmid vector construct第48-50页
        3.2.13 Preparation of competent cells of A. tumefaciens第50页
        3.2.14 Agrobacterium mediated transformation in Arabidopsis by floral dip method第50页
        3.2.15 Screening for selection of transformed Arabidopsis seeds第50-51页
        3.2.16 Seed sterilization第51页
        3.2.17 Preparation of MS nutrient medium第51页
        3.2.18 Tissue culture第51页
        3.2.19 Abiotic stress treatment of Ta PYL3 transformed Arabidopsis plants第51-52页
        3.2.20 Gene amplification and transcriptional expression in transgenic lines第52-53页
        3.2.21 Relative expression level of transgenic Arabidopsis lines第53页
    3.3 Results (Transgenic Arabidopsis)第53-57页
        3.3.1 Mannitol stress treatment第53-54页
        3.3.2 4°C stress treatment第54页
        3.3.3 ABA stress treatment第54-56页
        3.3.4 Na Cl stress treatment第56-57页
        3.3.5 Gene amplification and relative expression in transgenic lines第57页
    3.4 Discussion第57-58页
    3.5 Conclusion第58-59页
Chapter 4 Functional marker development of Ta PYL3 gene from wheat第59-78页
    4.1 Introduction第59-60页
        4.1.1 Development and application of molecular marker第59页
        4.1.2 Natural variation in wheat by comparative genomics approach第59-60页
    4.2 Materials and methods第60-62页
        4.2.1 Plant materials第60页
        4.2.2 Agronomic traits measurements of plant materials第60-61页
        4.2.3 Primer specificity analysis第61页
        4.2.4 Cloning and sequence analysis of Ta PYL3第61页
        4.2.5 Development of a functional marker for Ta PYL3第61页
        4.2.6 Gene linkage chromosome mapping第61-62页
        4.2.7 Association analysis between Ta PYL3 allelic variation and agronomic traits第62页
    4.3 Results第62-71页
        4.3.1 Ta PYL3 genetic mapping第62-63页
        4.3.2 Cloning and SNP identification of Ta PYL3 gene第63-64页
        4.3.3 Functional marker development of Ta PYL3第64-65页
        4.3.4 Association of SNP (G/A) at 1605 position with chlorophyll content and spikelet number per spike第65-68页
        4.3.5 Association of SNP ( C/A) at 2547 position with grains per spike, thousand kernel weight and yield per plant第68-70页
        4.3.6 Geographical sharing of G/A SNP allelic variation in Chinese wheat producing regions第70页
        4.3.7 Geographical sharing of C/A SNP allelic variation in Chinese wheat producing regions第70-71页
    4.4 Discussions第71-78页
        4.4.1 Role of Ta PYL3 in plant species第71页
        4.4.2 TaPYL3 cloning and functional marker development第71-72页
        4.4.3 TaPYL3 is a drought tolerance gene and may improve wheat yield and quality第72-73页
        4.4.4 Selection of TaPYL3 alleles in wheat agro-ecological zones第73-78页
Chapter 5 Conclusion第78-79页
REFERENCES第79-92页
ACKNOWLEDGEMENT第92-93页
RESUME第93页

论文共93页,点击 下载论文
上一篇:MAPK信号途径调控小菜蛾Bt Cry1Ac毒素抗性的分子机制研究
下一篇:玉米耐低磷种质资源筛选和遗传研究