首页--数理科学和化学论文--数学论文--动力系统理论论文

动力系统的复杂性及嵌入问题的研究

摘要第5-6页
ABSTRACT第6页
绪论第8-19页
Introduction第19-21页
1 Preliminaries第21-39页
    1.1 Topological dynamical systems and measure-preserving systems第21-27页
        1.1.1 Topological dynamical systems第21-22页
        1.1.2 A special class: systems of order 2第22-23页
        1.1.3 Factors of topological dynamical systems第23-24页
        1.1.4 Equicontinuity第24页
        1.1.5 Invariant measures and measure-preserving systems第24-25页
        1.1.6 Pointwise good sequences第25-26页
        1.1.7 Factors of measure-preserving systems第26-27页
        1.1.8 Conditional expectation and disintegration第27页
    1.2 Sequence entropy第27-30页
        1.2.1 Topological sequence entropy第28页
        1.2.2 Measure-theoretic sequence entropy第28-29页
        1.2.3 Relationship between topological and measure-theoretic entrop第29页
        1.2.4 Pinsker σ-algebra and applications第29-30页
    1.3 Entropy dimension第30-33页
        1.3.1 Dimension of a sequence of positive integers第30-31页
        1.3.2 Topological entropy dimension第31-32页
        1.3.3 Measure-theoretic entropy dimension第32-33页
    1.4 Mean dimension第33-34页
    1.5 Li-Yorke chaos第34页
    1.6 Toolbox第34-39页
        1.6.1 Continued fractions第34-35页
        1.6.2 Mycielski's theorem and an extension theorem第35-36页
        1.6.3 Baire spaces第36页
        1.6.4 Linear independence and affine independence第36-39页
2 Group extensions over irrational rotations on the torus第39-51页
    2.1 Background第39-40页
    2.2 Topological complexity第40-44页
    2.3 Minimality and the maximal equicontinuous factor第44-49页
    2.4 An example第49-51页
3 Sequence entropy and entropy dimension第51-59页
    3.1 Zero topological sequence entropy第51-54页
    3.2 Topological entropy dimension第54-55页
    3.3 Zero measure-theoretic sequence entropy第55-56页
    3.4 Measure-theoretic entropy dimension第56-59页
4 Mean Li-Yorke chaos along good sequences第59-69页
    4.1 Characteristic σ-algebras第59-62页
    4.2 Good sequences for pointwise convergence第62-64页
    4.3 In positive entropy systems第64-67页
    4.4 Non-invertible case第67-69页
5 The embedding problem in dynamical systems第69-87页
    5.1 Background第69-72页
    5.2 Rokhlin dimension: an embedding result第72-75页
    5.3 Takens' embedding theorem第75-85页
    5.4 The Lindenstrauss-Tsukamoto Conjecture: a remark第85-87页
Bibliography第87-93页
Acknowledgements第93-95页
Publications第95页

论文共95页,点击 下载论文
上一篇:Hessian方程的几个存在性结果
下一篇:间断有限元方法的稳定性、误差估计及超收敛性分析