首页--语言、文字论文--常用外国语论文--英语论文--语文教学论文

任务型教学法在中职专业英语阅读教学中的应用与研究

中文摘要第3-4页
ABSTRACT第4-5页
Chapter I Introduction第8-12页
    1.1 The background of the research第8-10页
    1.2 The significance and purposes of the research第10-11页
    1.3 The structure of the research第11-12页
Chapter II Literature Review第12-29页
    2.1 Basic theories of task-based teaching approach第12-18页
        2.1.1 The definition of task第12-14页
        2.1.2 The basic characters of task第14-15页
        2.1.3 The basic principles of task-based approach第15-16页
        2.1.4 The components of task-based approach第16-17页
        2.1.5 The basic steps of task-based approach第17-18页
    2.2 Review of related study on task-based approach abroad and at home第18-20页
    2.3 Theoretical basis of task-based language approach第20-26页
        2.3.1 Cognitive psychology第20-21页
        2.3.2 Social constructivist theory第21-23页
        2.3.3 Input and output hypothesis第23-25页
        2.3.4 Multiple intelligence theory第25-26页
    2.4 The characteristic of reading teaching in vocational school第26-27页
    2.5 Definition of ESP第27-29页
Chapter III The Application of Task-based Teaching Approach to ESP in Vocational School第29-41页
    3.1 The purposes of the experiment第29页
    3.2 The questions of the experiment第29页
    3.3 Subjects of the experiment第29-30页
    3.4 Research instrument第30页
    3.5 Teaching material第30-31页
    3.6 The application of task-based approach in ESP class (The procedure of theexperiment)第31-39页
    3.7 Summary第39-41页
Chapter IV The Results and Discussion第41-48页
    4.1 Analysis of reading interests第41-42页
    4.2 Analysis of tests results第42-45页
    4.3 Analysis of cooperation and multiple-intelligence inventories第45-48页
Chapter V Conclusion第48-50页
    5.1 Major findings第48页
    5.2 Limitations of the research第48-49页
    5.3 Suggestions第49-50页
References第50-52页
Appendix I Questionnaire第52-54页
Appendix II Multiple Intelligences Inventory for Learners第54-56页
Appendix III The data of experiment第56-58页
Acknowledgement第58页

论文共58页,点击 下载论文
上一篇:关于量子多重代理签名协议的研究
下一篇:遗传疾病突变的数据挖掘分析