首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

退化阻尼对高维可压缩欧拉方程组经典解的影响

中文摘要第6-8页
Abstract第8-10页
Chapter 1 Preface第11-15页
Chapter 2 The Cauchy problem to the 3-D irrotational flows第15-45页
    2.1 Introduction第15-20页
    2.2 Global existence for small data in case 0≤λ≤1第20-34页
    2.3 Blowup for small data in caseλ>1第34-45页
Chapter 3 The Cauchy problem to the multi-dimensional compressible Euler equations第45-81页
    3.1 Introduction第45-51页
    3.2 Some Preliminaries第51-54页
    3.3 Proof of Theorem 3.1.1第54-62页
        3.3.1 Estimates of velocity u and vorticity w第54-56页
        3.3.2 Estimates of θ and its derivatives第56-60页
        3.3.3 Proof of Theorem 3.1.1第60-62页
    3.4 Proof of Theorem 3.1.2第62-69页
        3.4.1 Estimates of velocity u and its derivatives第62-64页
        3.4.2 Estimates of θ and its derivatives第64-69页
        3.4.3 Proof of Theorem 3.1.2第69页
    3.5 Proof of Theorem 3.1.3第69-81页
Chapter 4 The initial-boundary value problem to the multi-dimensional compressible Euler equations in R_+~d第81-101页
    4.1 Introduction第81-83页
    4.2 Some Preliminaries第83-85页
    4.3 Estimates of the temporal derivatives and tangential derivatives第85-93页
    4.4 Proof of Theorem 4.1.1第93-101页
        4.4.1 Estimates of the normal derivatives第93-95页
        4.4.2 Proof of Theorem 4.1.1第95-101页
Appendix A Proof on the lower bound of P(t,l) in (?)第101-105页
Bibliography第105-111页
致谢第111-113页
论文情况第113-114页

论文共114页,点击 下载论文
上一篇:细胞内新生成蛋白及特定脂或酸的成像分析
下一篇:支持绿色云计算的资源调度方法及关键技术研究