ABSTRACT | 第1-9页 |
摘要 | 第9-19页 |
Chapter 1 Introduction | 第19-25页 |
·Motivation and Objectives | 第19-20页 |
·Problem statements and research questions | 第20-22页 |
·Main scientific contributions | 第22页 |
·Summary | 第22-23页 |
·Organization of the thesis | 第23页 |
·Bibliography | 第23-25页 |
Chapter 2 Background | 第25-52页 |
·Games | 第26页 |
·Video games vs. classic games | 第26-27页 |
·AI and video games | 第27页 |
·Research opportunities in game AI | 第27-30页 |
·Test-beds of prey/predator game | 第30-35页 |
·Dead-End | 第30-32页 |
·Pac-Man | 第32-35页 |
·Adaptation | 第35-40页 |
·Why is adaptation necessary | 第36-37页 |
·Two effects of adaptation | 第37-38页 |
·Macro and micro adaptation | 第38页 |
·Direct and indirect adaptation | 第38-40页 |
·Generating challengeable and satisfactory adaptive game opponents | 第40-41页 |
·Player Modeling and Strategy-Based Player Modeling | 第41-42页 |
·Analysis of "Player Modeling and Opponent Adaptation" by the MECHANISM approach | 第42-47页 |
·The MECHANISM approach | 第42-45页 |
·Explaining "Player Modeling and Opponent Adaptation" by the MECHANISM approach | 第45-46页 |
·Explaining "Strategy-Based Player Modeling and Opponent Adaptation" by MECHANISM | 第46-47页 |
·Summary | 第47-48页 |
·Bibliography | 第48-52页 |
Chapter 3 Opponent Adaptation:generating challengeablegame opponents by CI approaches | 第52-100页 |
·Adaptation | 第52-53页 |
·Adapt from different aspects | 第53页 |
·The evolution of game AI | 第53页 |
·Three approaches to accomplish adaptation | 第53-55页 |
·Existing knowledge-dependent game AI generation | 第55-59页 |
·Finite State Machine | 第55-56页 |
·Scripting | 第56-57页 |
·Expert System | 第57-58页 |
·The pros and cons of knowledge-dependent game AI generation techniques | 第58-59页 |
·Proposed knowledge-independent game AI generation with CI | 第59-68页 |
·The pros and cons of CI | 第60-62页 |
·CI and Automatic Game Design/Development | 第62页 |
·Monte Carlo | 第62-63页 |
·MCTS | 第63-65页 |
·UCT | 第65-67页 |
·Prerequisites for applying CI approaches of MCTS and UCT | 第67-68页 |
·Applying straight-CI to Dead-End | 第68-78页 |
·Defined meta-rules | 第68-69页 |
·MCTS control of the NPC "DOG" | 第69-76页 |
·UCT control of the NPC "DOG" | 第76-78页 |
·Result | 第78页 |
·Applying straight-CI to Pac-Man | 第78-82页 |
·Defined meta-rules | 第79页 |
·MCTS control of the NPC "GHOST" | 第79-80页 |
·UCT control of the NPC "GHOST" | 第80-81页 |
·Result | 第81-82页 |
·Proposed knowledge-independent game AI generation with knowledge-based-CI | 第82-91页 |
·The pros and cons of knowledge-based CI | 第82-85页 |
·Auto knowledge acquisition | 第85-86页 |
·ANN | 第86-89页 |
·Optimizing with neuro-evolution | 第89-90页 |
·Opponent Adaptation by correlating knowledge-based-CI with SBPM | 第90-91页 |
·Applying knowledge-based-CI to Dead-End | 第91-94页 |
·Knowledge-based-MCTS control of the NPC "DOG" | 第91-92页 |
·Knowledge-based-UCT control of the NPC "DOG" | 第92页 |
·Optimizing the neuro-controller | 第92-94页 |
·Result | 第94页 |
·Applying knowledge-based-CI to Pac-Man | 第94-96页 |
·Knowledge-based-MCTS control of the NPC "GHOST" | 第94-95页 |
·Knowledge-based-UCT control of the NPC "GHOST" | 第95页 |
·Optimizing the neuro-controller from CI-created data with neuro-evolution | 第95-96页 |
·Result | 第96页 |
·Summary | 第96-97页 |
·Bibliography | 第97-100页 |
Chapter 4 Player Modeling | 第100-152页 |
·Player Modeling (PM) | 第100-104页 |
·Player Modeling | 第101页 |
·Why is Player Modeling necessary | 第101-102页 |
·Applications area of Player Modeling | 第102-103页 |
·Applicable platforms of Player Modeling | 第103-104页 |
·Potential problems incurred by Player Modeling and remedies of it | 第104页 |
·Strategy-Based Player Modeling (SBPM) | 第104页 |
·What to model | 第104-113页 |
·Model from player's preference | 第105-107页 |
·Model from player's "preferred style of play" in a storytelling game | 第107-108页 |
·Model from player's deviation from the optimal choices | 第108-110页 |
·Model from player's satisfaction or entertainment | 第110-112页 |
·Model from player's utilization of strategy/Strategy-Based Player Modeling | 第112-113页 |
·How to model | 第113-115页 |
·Trivial approaches for PM | 第113-114页 |
·Machine learning approaches for PM | 第114页 |
·Machine learning for SBPM | 第114-115页 |
·Supervised learning for SBPM | 第115-124页 |
·Supervised learning and its algorithms | 第115-121页 |
·Supervised learning for SBPM | 第121-123页 |
·Evaluation of the opponent AI | 第123-124页 |
·Unsupervised learning for SBPM | 第124-127页 |
·Unsupervised learning and its algorithms | 第124-127页 |
·Unsupervised learning for SBPM | 第127页 |
·Supervised and unsupervised SBPM in Dead-End | 第127-138页 |
·Supervised SBPM in Dead-End | 第127-130页 |
·Unsupervised SBPM in Dead-End | 第130页 |
·SBPM in Dead-End with triple-stategy-players | 第130-136页 |
·SBPM in Dead-End with single-stategy-players | 第136-138页 |
·Result | 第138页 |
·Supervised and unsupervised SBPM in Pac-Man | 第138-148页 |
·Supervised SBPM in Pac-Man | 第138-144页 |
·Unsupervised SBPM in Pac-Man | 第144页 |
·SBPM in Pac-Man with triple-stategy-players | 第144-148页 |
·Result | 第148页 |
·Summary | 第148页 |
·Bibliography | 第148-152页 |
Chapter 5 Opponent Adaptation:generating satisfactorygame opponents from "DDA by CI" approaches | 第152-174页 |
·Entertainment modeling | 第152-153页 |
·Qualitative approaches | 第153页 |
·Quantitative approaches | 第153页 |
·Optimizing Player Satisfaction (OPS) | 第153-154页 |
·Implicit approaches | 第153-154页 |
·Explicit approaches | 第154页 |
·Flow and Gameflow with OPS | 第154-157页 |
·Flow | 第154-156页 |
·GameFlow | 第156页 |
·Flow and Gameflow vs. player's satisfaction | 第156-157页 |
·Dynamic Difficulty Adjustment (DDA) | 第157-161页 |
·DDA and OPS | 第157页 |
·Existing DDA approach | 第157-158页 |
·Three different DDAs | 第158-159页 |
·Proposed "DDA by CI" | 第159-160页 |
·Game Level Design with DDA | 第160-161页 |
·Proposed "DDA by time-constrained-CI" | 第161-166页 |
·The pros and cons of "DDA by time-constrained-CI" | 第161-162页 |
·"DDA by time-constrained-MCTS" | 第162-163页 |
·"DDA by time-constrained-UCT" | 第163页 |
·"DDA by time-constrained-CI" in Dead-End | 第163-164页 |
·"DDA by time-constrained-CI" in Pac-Man | 第164-166页 |
·Result | 第166页 |
·Proposed "DDA by knowledge-based-time-constrained-CI" | 第166-171页 |
·The pros and cons of "DDA by knowledge-based-time-constrained-CI" | 第167页 |
·"DDA by knowledge-based-time-constrained-MCTS" | 第167页 |
·"DDA by knowledge-based-time-constrained-UCT" | 第167页 |
·"DDA by knowledge-based-time-constrained-CI" in Dead-End | 第167-170页 |
·"DDA by knowledge-based-time-constrained-CI" in Pac-Man | 第170-171页 |
·Result | 第171页 |
·Summary | 第171-172页 |
·Bibliography | 第172-174页 |
Chapter 6 Conclusions | 第174-184页 |
·Answer to research questions | 第174-176页 |
·CI used for NPC control in order to create challengeable opponent | 第174-175页 |
·Knowledge-based-CI used for NPC control in order to create challengeable opponent | 第175页 |
·SBPM by supervised and unsupervised learning | 第175-176页 |
·"DDA by CI" approaches used for generating satisfactory game opponents | 第176页 |
·Answers to problem statements | 第176-177页 |
·Limitations | 第177-178页 |
·Applying the MCTS and UCT | 第177-178页 |
·Strategy-Based Player Modeling | 第178页 |
·Extensibility and future work | 第178-180页 |
·Applying Dynamic Tree Search | 第178页 |
·Applying affective computing | 第178-179页 |
·Further abstraction for Strategy-Based Player Modeling | 第179页 |
·Players'satisfaction test | 第179-180页 |
·Summary | 第180-181页 |
·Bibliography | 第181-184页 |
Appendices | 第184-189页 |
Acknowledgements | 第189-190页 |
List of Published papers | 第190-192页 |
详细摘要 | 第192-209页 |