首页--农业科学论文--农作物论文--经济作物论文--棉论文

Genetic Dissection of Boll Size Regulation and Genome Wide Motif Imperfection Analysis in Cotton

Abstract第8-10页
摘要第11-13页
List of abbreviations第13-14页
Chapter 01 Introduction第14-26页
    1.1 Cotton taxonomy and economic importance第14页
    1.2 Era of cotton genomics第14-15页
    1.3 Genetic linkage mapping第15-16页
    1.4 Bulk segregation analysis(BSA)第16页
    1.5 Mapping populations第16-17页
    1.6 Molecular markers and QTL mapping第17-18页
    1.7 Mapping QTLs for complex yield traits第18-19页
    1.8 Fine mapping strategies第19-20页
    1.9 Fine mapping complex trait in crops第20-21页
    1.10 Fine mapping and map-based cloning in cotton第21-22页
    1.11 Boll development phases in cotton第22-23页
    1.12 Microsatellites motif imperfection第23页
    1.13 Mechanism of motif imperfection in SSRs第23-24页
    1.14 Intrinsic DNA features relate imperfection in microsatellites第24-25页
    1.15 Motif imperfection and evolution of polyploidy in crops第25页
    1.16 Study objectives and significance第25-26页
Chapter 02 Map-based cloning qSCW-cl2第26-70页
    2.1 Introduction第26-29页
    2.2 Materials and methods第29-38页
        2.2.1 Plant materials and mapping populations第29-30页
        2.2.2 Phenotype evaluation and analysis第30-31页
        2.2.3 Designing markers from genomic sequences第31页
        2.2.4 PCR, PAGE and SSR genotyping第31-32页
        2.2.5 Genetic map construction and QTL mapping第32页
        2.2.6 Regional association mapping第32页
        2.2.7 Scanning electron microscopy (SEM)第32页
        2.2.8 Ovule culture assay第32-33页
        2.2.9 Measurement of total fiber units (TFU)第33-34页
        2.2.10 Gene annotations prediction第34页
        2.2.11 Digital expression analysis in Li_1 transcriptome第34-35页
        2.2.12 RNA extraction and real-time PCR第35-36页
        2.2.13 Cloning for structural variations in GhBRH1_A12第36-37页
        2.2.14 Shoot elongation and BL sensitivity assay第37页
        2.2.15 Histological analysis第37-38页
    2.3 Results第38-64页
        2.3.1 Boll size variations between Emian22 and BS41第38-40页
        2.3.2 Phenotypic analysis of boll weight traits第40-41页
        2.3.3 Detecting yield trait QTLs on chr12第41-43页
        2.3.4 qSCW-c12 identification, validation in different populations第43-46页
        2.3.7 Fine mapping qSCW-c12第46-48页
        2.3.8 Refine mapping qSCW-c12第48-49页
        2.3.9 Homology mapping and candidate gene prediction第49-51页
        2.3.10 Map-based cloning qSCW-c12第51-53页
        2.3.11 Candidate gene prediction based on their expression第53-54页
        2.3.12 GhBRH1_A12 was differentially expressed in ODPA ovules第54-56页
        2.3.13 GhBRH1_A12 involved in modulating BR homeostasis第56-58页
        2.3.14 BS41 exhibited BR-deficient mutant like phenotype第58-59页
        2.3.15 BS41, a novel BR-insensitive mutant第59-61页
        2.3.16 BR insensitivity attenuated cell expansion in BS41第61-62页
        2.3.17 BS41 features quality fiber production第62-64页
    2.4 Discussion第64-69页
        2.4.1 BILs are valuable resource for fine mapping QTLs第64页
        2.4.2 Boll size regulating QTLs on chr12第64-65页
        2.4.3 qSCW-c12 interval consistent with previously mapped QTLs第65-66页
        2.4.4 GhBRH_A12, a new player in regulating Fiber initiation第66页
        2.4.5 QTL qSCW-c12 is a pleiotropic locus第66-67页
        2.4.6 GhBRH1_A12 involved in modulating BR homeostasis第67-68页
        2.4.7 BS41, a novel boll size mutant producing quality fiber第68-69页
    2.5 Conclusion第69-70页
Chapter 03 Functional analysis of BRH1 gene family in cotton第70-90页
    3.1 Introduction第70-72页
    3.2 Material and methods第72-79页
        3.2.1 Sequence retrieval, gene structure, and phylogenetic analysis第72页
        3.2.2 Protein domain, motif, annotation, and GO analysis第72页
        3.2.3 Prediction of transmembrane topology第72-73页
        3.2.4 Expression profiling第73页
        3.2.5 Digital expression analysis in Li_1 transcriptome第73页
        3.2.6 Cloning for structural variations in GhBRH1_A12第73-74页
        3.2.7 Constructing overexpression vectors第74-75页
        3.2.8 RNAi vector construction第75-76页
        3.2.9 Genetic transformation and cotton tissue culture第76-77页
        3.2.10 RNA extraction and qRT-PCR第77-78页
        3.2.11 Phenotype evaluation and analysis第78-79页
    3.3 Results第79-89页
        3.3.1 Structure of BRH1 peptide第79页
        3.3.2 Identification of putative BRH1 genes in four cotton genomes第79-81页
        3.3.3 Phylogenetic analysis of cotton BRH1 genes第81-82页
        3.3.4 Genetic diversity and evolution of GhBRH1 gene family第82页
        3.3.5 Characteristics of GhBRH1 gene family第82-83页
        3.3.6 Expression profiling of GhBRH1 genes in cultivated cotton第83-84页
        3.3.7 GhBRH1 differentially expressed during fiber development第84-85页
        3.3.8 Gene regulatory elements of GhBRH1_A12 in BS41第85-86页
        3.3.9 Genetic transformation of a GhBRH1_A12 in cotton第86-87页
        3.3.10 GhBRH1_A12 expression in transgenic (T_0) plants第87-89页
    3.4 Discussion第89-90页
Chapter 04 Evolutionary dynamics of motif imperfection in cotton第90-114页
    4.1 Introduction第90-92页
    4.2 Material and methods第92-96页
        4.2.1 Genome assemblies of 13 plant species第92页
        4.2.2 Imperfect microsatellites identification第92-93页
        4.2.3 Motif Imperfection and repeat length analyses第93-94页
        4.2.4 Transposable elements (TEs)distribution第94页
        4.2.5 Motif imperfection in coding region of Gossypium species第94页
        4.2.6 Microsatellites conservation analysis第94-95页
        4.2.7 Microsatellite loss during paleopolyploidization event第95-96页
    4.3 Results第96-110页
        4.3.1 Frequency and distribution of microsatellites第96-98页
        4.3.2 Motif imperfection and repeat length relationship第98-101页
        4.3.3 Motif imperfection in Gossypium genomes第101-103页
        4.3.4 Motif interruptions in coding sequence第103-105页
        4.3.5 Large motif repeats well conserved in Gossypium species第105-106页
        4.3.6 Microsatellite decay estimation第106-108页
        4.3.7 Biased distribution of 2nt repeats in Gossypium species第108-110页
    4.4 Discussion第110-113页
    4.5 Conclusion第113-114页
References第114-133页
Supplementary information第133-148页
Publications第148-149页
Acknowledgement第149-150页
附件第150页

论文共150页,点击 下载论文
上一篇:StPOTHR1基因在马铃薯晚疫病抗性中的功能解析
下一篇:夏玉米理化参数对连续水分胁迫的响应特征及遥感监测