首页--工业技术论文--金属学与金属工艺论文--金属切削加工及机床论文--铣削加工及铣床论文--程序控制铣床和数控铣床论文

复杂项目决策和经济性评价的计算机工程

Abstract第4页
Chapter 1 Introduction and Literature Review第8-37页
    1.1 Introduction第8-10页
    1.2 Eco-design and life cycle analysis第10-15页
        1.2.1 Eco-design第11页
        1.2.2 Eco-design levels第11-12页
        1.2.3 Regulations and standardization with regard toeco-design第12-13页
        1.2.4 Eco-design tools第13页
        1.2.5 life-cycle assessment (LCA)第13-15页
    1.3 Eco-sustainable and traditional manufacturing第15-21页
        1.3.1 Modeling of eco-manufacturing based on processes第16-18页
        1.3.2 Modeling the eco-manufacturing based on energetic第18-19页
        1.3.3 Modeling of eco-manufacturing based on consumption resource第19-20页
        1.3.4 Concept of low-carbon manufacturing (LCM)第20-21页
    1.4 Aid Decision and multi-criteria support process第21-23页
        1.4.1 Definition第21页
        1.4.2 The type of problematic decision第21-22页
        1.4.3 Aid decision methods multi-criteria (ADMMC)第22页
        1.4.4 Procedure for selection aid decision method第22页
        1.4.5 Aid decision for eco-manufacturing第22-23页
    1.5 Process approach to modeling the eco-manufacturing第23-26页
        1.5.1 Aid decision methods第24-26页
        1.5.2 The weighting problematic eco-manufacturing第26页
    1.6 Techniques and optimization methods第26-36页
        1.6.1 Deterministic methods第27-28页
        1.6.2 Stochastic methods第28-36页
    1.7 Focus of the thesis第36-37页
Chapter 2 The methods to solve the multi-objectives optimization第37-46页
    2.1 Eco-manufacturing optimization第37-38页
    2.2 The methods for solving the multi-objectives optimization第38-43页
        2.2.1 Particle Swarm Optimization (PSO)第38-39页
        2.2.2 Presentation of PSO第39-40页
        2.2.3 Notion of vicinity第40页
        2.2.4 PSO for the continuous optimization第40-42页
        2.2.5 Implementation of the PSO for eco-manufacturing第42页
        2.2.6 Approaches aggregation weight第42-43页
    2.3 The Genetic algorithms (GA) for multi-objective optimization第43-45页
        2.3.1 Genetic algorithms第43页
        2.3.2 Methodological principle第43-44页
        2.3.3 Parameters of GA第44页
        2.3.4 Multi-objective optimization第44-45页
        2.3.5 GA for multi-objective optimization第45页
    2.4 Summary第45-46页
Chapter 3 Simulation and modeling of turning operation第46-55页
    3.1 The objectives functions第46-48页
        3.1.1 Time of production第46-47页
        3.1.2 Cost of production第47页
        3.1.3 Energy consumption第47-48页
    3.2 Limitations第48-49页
        3.2.1 Limiting the cutting power第48页
        3.2.2 Limitation of permissible force torque on the spindle第48页
        3.2.3 Limitation related to the tool第48-49页
        3.2.4 Limitation related to the workpiece第49页
    3.3 Simulation data第49页
    3.4 Results第49-52页
        3.4.1 Evaluation of cutting parameters第49-50页
        3.4.2 Optimization the objectives functions第50-52页
    3.5 Influence of cutting depth第52-53页
    3.6 Comparison with genetic algorithms第53-54页
    3.7 Summary第54-55页
Chapter 4 Simulation and modelingof milling operation第55-64页
    4.1 Determination of objective functions第55-57页
        4.1.1 Time of production第55-56页
        4.1.2 Cost of production第56页
        4.1.3 Ecological footprint第56页
        4.1.4 Quality of surface第56-57页
    4.2 Production constraints第57-58页
        4.2.1 Limitation with the cutting force第57页
        4.2.2 Limitation with the cutting power第57页
        4.2.3 Limitation related to the practical strength at break第57页
        4.2.4 Limitation on the deformation resistance of the cutting tool第57-58页
    4.3 Simulation data第58页
    4.4 Results and discussion第58-62页
        4.4.1 Evaluation of cutting parameters第58-60页
        4.4.2 Evolution of optimization objectives第60-62页
    4.5 Comparison with particle swarm method第62-63页
    4.6 Summary第63-64页
Chapter 5 Experimental for influencing the cutting parameters on productquality第64-80页
    5.1 Experiment setup第64-67页
        5.1.1 Workpiece material第64-65页
        5.1.2 Milling conditions第65-66页
        5.1.3 Measurement of surface topography and tolerance第66-67页
    5.2 Results and discussion第67-78页
    5.3 Summary第78-80页
Conclusions第80-82页
References第82-91页
Acknowledgements第91页

论文共91页,点击 下载论文
上一篇:单晶硅的超声波辅助振动磨削
下一篇:面向计算机辅助维护管理系统的预诊方法研究