首页--数理科学和化学论文--数学论文--数学分析论文--函数论论文--实分析、实变函数论文--凸函数、凸集理论论文

Some Problems of Convex Analysis in Carnot Groups

1 Introduction第9-15页
2 Main notions第15-36页
    2.1 Carnot-Caratheodory spaces第15-18页
    2.2 Carnot groups第18-27页
        2.2.1 Carnot groups of step two第22-25页
        2.2.2 Groups of Heisenberg type第25-27页
    2.3 Some general results in Carnot groups第27-29页
    2.4 Convex functions on Carnot groups第29-36页
        2.4.1 Definition of convex functions第29-33页
        2.4.2 Basic properties of convex functions第33-36页
3 Inequalities of Hadamard Type for r-Convex Functions第36-55页
    3.1 Introduction第36-37页
    3.2 Definitions and main results第37-43页
    3.3 Basic properties for r-convex functions第43-46页
    3.4 The proofs of theorems第46-51页
    3.5 Some simple applications第51-55页
4 Lipschitz continuity of H-convex functions第55-70页
    4.1 A new proof of Lipschitz continuity of H-convex functions in H"第56-61页
    4.2 A characterization of H-convex functions第61-66页
    4.3 Lipschitz continuity of H-convex functions in Carnot groups第66-70页
5 Comparison principle of convex functions第70-93页
    5.1 Introduction第70-76页
    5.2 Comparison principle第76-84页
    5.3 Applications第84-93页
6 H-quasiconvex functions第93-109页
    6.1 Definitions and some basic properties第93-95页
    6.2 H-quasiconvpx functions coincide with H-convex level sets第95页
    6.3 A characterization第95-97页
    6.4 Estimates of the L~∞ norm of first derivative第97-100页
    6.5 Boundedness from above第100-109页

论文共109页,点击 下载论文
上一篇:城市电视台移动互联网的布局及盈利模式研究
下一篇:山东东岳轮胎有限公司发展战略研究