首页--工业技术论文--一般工业技术论文--工程材料学论文--特种结构材料论文

二元/三元铜硫族化合物的设计和合成及其在能源转化的应用

中文摘要第5-7页
Abstract第7-9页
CHAPTER 1 Introduction第14-37页
    1.1 Copper chalcogenides in energy and biological applications第14-21页
        1.1.1 Counter electrodes for quantum-dot-sensitized solar cells第15-16页
        1.1.2 Electrocatalytic performance for fuel cells第16-17页
        1.1.3 Thermoelectric properties第17-18页
        1.1.4 Electrodes for Li/Na ion battery第18-20页
        1.1.5 Photothermal therapy第20-21页
    1.2 Synthesis approaches for copper chalcogenides第21-28页
        1.2.1 Hydrothermal or solvothermal method第21-22页
        1.2.2 Standard Schlenk line and glovebox techniques第22-23页
        1.2.3 Thermolysis methods第23-24页
        1.2.4 Microwave method第24-25页
        1.2.5 Sonochemical method第25页
        1.2.6 Eletrodeposition第25-26页
        1.2.7 Melting and ball milling method第26页
        1.2.8 Cation exchange reaction第26-28页
    1.3 Basic aspects of the topic and research contents第28-29页
    References第29-37页
CHAPTER 2 Aqueous Preparation of Surfactant-Free Copper Selenide Nanowires withThermoelectric Performance第37-56页
    2.1 Introduction第37-38页
    2.2 Experimental Section第38-40页
        2.2.1 Chemical reagents第38页
        2.2.2 Synthesis of Cu_(2-x)Se nanowires第38-39页
        2.2.3 Crystal structure and morphology evolution of Cu_(2-x)Se nanowires第39页
        2.2.4 Synthesis of Cu_(2-x)Se from as-synthesized CuSe in alkaline solution第39页
        2.2.5 Characterization第39页
        2.2.6 Thermoelectric measurements第39-40页
    2.3 Results and discussion第40-53页
        2.3.1 Results of synthesized Cu_(2-x)Se nanowires第40-41页
        2.3.2 Formation evolution Cu_(2-x)Se nanowires第41-45页
        2.3.3 Effects of reaction parameters第45-48页
        2.3.4 Formation mechanism Cu_(2-x)Se nanowires第48-50页
        2.3.5 Thermoelectric performance第50-53页
    2.4 Conclusions第53页
    References第53-56页
CHAPTER 3 Ambient fa cile synthesis of gram-scale copper selenide nanostructures fromcommercial copper and selenium powder第56-73页
    3.1 Introduction第56-57页
    3.2 Experimental Section第57-59页
        3.2.1 Chemical reagents第57页
        3.2.2 Synthesis of Cu_(2-x)Se nanostructures第57页
        3.2.3 Effects of chalcogen/2-mercaptoethanol ratio on Cu_(2-x)Se nanostructures第57页
        3.2.4 Morphology evolution of Cu_(2-x)Se nanostructures第57-58页
        3.2.5 Characterization第58页
        3.2.6 Thermoelectric measurements第58-59页
    3.3 Results and discussion第59-70页
        3.3.1 Results of synthesized Cu_(2-x)Se nanostructures第59-64页
        3.3.2 Effects of chalcogen/2-mercaptoethanol ratio on Cu_(2-x)Se nanostructures第64-65页
        3.3.3 Morphology evolution of Cu_(2-x)Se nanostructures第65-67页
        3.3.4 Thermoelectric performance第67-68页
        3.3.5 Stability of Cu_(2-x)Se in thermoelectric performance第68-70页
    3.4 Conclusions第70-71页
    References第71-73页
CHAPTER 4 Room-Temperature Synthesis of Cu_(2-x)E(E=S,Se) Nanotubes asHigh-Performance Counter Electrodes of Quantum-Dot-Sensitized Solar Cells第73-102页
    4.1 Introduction第73-74页
    4.2 Experimental Section第74-78页
        4.2.1 Chemical reagents第74-75页
        4.2.2 Computational Methods第75页
        4.2.3 Solubility of Se or S powder in 2-mercaptoethanol第75页
        4.2.4 Synthesis of Cu nanowires第75-76页
        4.2.5 Synthesis of Cu_(2-x)Se and Cu_(2-x)S nanotubes第76页
        4.2.6 Morphology evolution of Cu_(2-x)Se nanotubes第76页
        4.2.7 Reaction of Cu nanowires with Se in different solutions第76-77页
        4.2.8 Effects of chalcogen/2-mercaptoethanol ratios on Cu_(2-x)Se and Cu_(2-x)S nanotubes第77页
        4.2.9 Characterization第77页
        4.2.10 Preparation of photoelectrodes第77页
        4.2.11 Preparation of Cu_(2-x)Se or Cu_(2-x)S counter electrodes第77-78页
        4.2.12 Assembly and measurements of QDSSCs第78页
    4.3 Results and discussion第78-98页
        4.3.1 Theoretical calculations第78-80页
        4.3.2 Result of solubility of Se or S powder in 2-mercaptoethanol第80-82页
        4.3.3 Results of synthesized Cu_(2-x)Se and Cu_(2-x)S nanotubes第82-85页
        4.3.4 Morphology evolution of Cu_(2-x)Se nanotubes第85-86页
        4.3.5 The functions of NaOH and 2-mercaptoethanol in reaction第86-88页
        4.3.6 Effects of chalcogen/2-mercaptoethanol ratios on Cu_(2-x)Se and Cu_(2-x)S nanotubes第88-91页
        4.3.7 Effects of different thiol ligands第91-93页
        4.3.8 Performances of QDSSCs with Cu_(2-x)Se or Cu_(2-x)S counter electrodes第93-98页
    4.4 Conclusions第98页
    References第98-102页
CHAPTER 5 Ambient Synthesis of One-Dimensional/Two-Dimensional CuAgSe TernaryNanotubes as Counter Electrodes of Quantum-Dot-Sensitized Solar Cells第102-122页
    5.1 Introduction第102-103页
    5.2 Experimental Section第103-106页
        5.2.1 Chemical reagents第103-104页
        5.2.2 Synthesis of CuAgSe nanotubes第104页
        5.2.3 Evol ution of CuAgSe nanotubes第104页
        5.2.4 Characterization第104页
        5.2.5 Preparation of photoelectrodes第104-105页
        5.2.6 Preparation of counter electrodes第105页
        5.2.7 Assembly and measurements of QDSSCs第105-106页
    5.3 Results and discussion第106-119页
        5.3.1 Results of synthesized CuAgSe nanotubes第106-110页
        5.3.2 Morphology evolution of CuAgSe nanotubes第110-112页
        5.3.3 Formation mechanism CuAgSe nanotubes第112-113页
        5.3.4 Effects of reaction parameters第113-116页
        5.3.5 Performances of QDSSCs with CuAgSe counter electrodes第116-119页
    5.4 Conclusions第119页
    References第119-122页
CHAPTER 6 Conclusions and Recommendations第122-124页
    6.1 Conclusions第122-123页
        6.1.1 Large-scaled copper selenide nanostructures for thermoelectric conversion第122-123页
        6.1.2 Copper chalcogenide nanotubes as counter electrodes for QDSSCs第123页
    6.2 Recommendations第123-124页
附录 中文摘要第124-132页
在校期间发表的论文及参加的国际学术会议第132-133页
资助第133-134页
致谢第134页

论文共134页,点击 下载论文
上一篇:秦代县级政务运行研究--以出土秦简为中心
下一篇:基于随动转向的半挂汽车列车整车动力学分析