首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

针对视频中移动目标检测的背景建模采样方法研究

Abstract第5-7页
CHAPTER 1: INTRODUCTION第20-30页
    1.1 VISUAL SURVEILLANCE SYSTEM第20-23页
    1.2 AN OVERVIEW OF OBJECT DETECTION第23-24页
    1.3 THESIS OVERVIEW AND PURPOSE OF THE STUDY第24-30页
        1.3.1 Thesis Objectives and Contributions第24-27页
        1.3.2 Thesis Structure第27-30页
CHAPTER 2: STATE OF THE ART: BACKGROUND SUBTRACTION第30-52页
    2.1 INTRODUCTION第30-32页
    2.2 BASIC APPROACHES FOR BACKGROUND SUBTRACTION第32-35页
        2.2.1 Basics and Challenges第32-33页
        2.2.2 Running Average and Frame Differences第33-35页
        2.2.3 Temporal Median for Background Modeling第35页
    2.3 PARAMETRIC STATISTICAL METHODS第35-43页
        2.3.1 One Distribution Function第36-38页
        2.3.2 Mixture of Distribution Functions第38-41页
        2.3.3 Fuzzy Approaches to Background Subtraction第41-43页
    2.4 SAMPLES BASED METHODS第43-49页
        2.4.1 Non parametric Methods for Background Subtraction第43-44页
        2.4.2 Codebook for Background Subtraction第44-46页
        2.4.3 Background Subtraction using Σ ? ? Modulation第46页
        2.4.4 Vi BE: Visual Background Extractor第46-49页
    2.5 EIGENBACKGROUNDS: A PRINCIPAL COMPONENT ANALYSIS AP-PROACH第49-51页
        2.5.1 Model Initialization第50-51页
        2.5.2 Classification Stage第51页
        2.5.3 Update of the Background Model第51页
    2.6 CONCLUSION第51-52页
CHAPTER 3: MOVING OBJECT SEGMENTATION VIA BACKGROUND SAMPLESDIVERSITY第52-76页
    3.1 INTRODUCTION第52-53页
    3.2 RELATED TECHNIQUES AND PROBLEMATIC STATEMENT第53-54页
        3.2.1 The Main Techniques and Methods第53页
        3.2.2 Discussion and Analysis of the Raised Issues第53-54页
    3.3 PROPOSED METHOD FOR OBJECT DETECTION第54-59页
        3.3.1 Framework Design第54页
        3.3.2 Model Samples Diversity第54-55页
        3.3.3 Model Definition and Initialization第55-57页
        3.3.4 Adaptive Threshold Computation and Decision第57-58页
        3.3.5 Model Update Procedure第58-59页
    3.4 EXPERIMENTS AND ANALYSIS第59-74页
        3.4.1 Experiments Description第60页
        3.4.2 Datasets Presentation第60-62页
        3.4.3 Evaluation Metrics第62-65页
        3.4.4 Parameters Settings第65-66页
        3.4.5 Results Presentation第66-72页
        3.4.6 Analysis and Discussion第72-74页
    3.5 CONCLUSION第74-76页
CHAPTER 4: SAMPLES MODELING WITH A NOVEL WEIGHTED UPDATE POL-ICY FOR MOTION DETECTION第76-102页
    4.1 INTRODUCTION第76-77页
    4.2 MAIN RELATED TECHNIQUES AND PROBLEMATIC STATEMENT第77-79页
        4.2.1 The Main Techniques and Methods第77-78页
        4.2.2 Discussion and Analysis of the Raised Issues第78-79页
    4.3 WEIGHTED SAMPLES FOR MOTION DETECTION第79-84页
        4.3.1 Framework Design第79-80页
        4.3.2 Weighted Samples Approach and Distance Computation第80页
        4.3.3 Background Model Definition第80-81页
        4.3.4 Foreground/ Background Separation第81-82页
        4.3.5 Weighted Background Maintenance第82-84页
    4.4 EXPERIMENTS AND ANALYSIS第84-101页
        4.4.1 Experiments Description第84-85页
        4.4.2 Dataset and Evaluation Metrics第85-87页
        4.4.3 Parameters Settings第87页
        4.4.4 Results Presentation第87-97页
        4.4.5 Analysis and Discussion第97-101页
    4.5 CONCLUSION第101-102页
CHAPTER 5: A BACKGROUND SUBTRACTION METHOD FOR OBJECT DETEC-TION IN VIDEO SURVEILLANCE第102-132页
    5.1 INTRODUCTION第102页
    5.2 MAIN RELATED TECHNIQUES AND PROBLEMATIC STATEMENT第102-104页
        5.2.1 The Main Techniques and Methods第102-103页
        5.2.2 Discussion and Analysis of the Raised Issues第103-104页
    5.3 CONTROLLED BACKGROUND MODEL FOR SURVEILLANCE第104-112页
        5.3.1 Framework Design第104-105页
        5.3.2 Background Model Initialization and Validation第105-107页
        5.3.3 Weighted Distance Computation第107页
        5.3.4 Long/Short Term Frame Difference第107-108页
        5.3.5 Adaptive Threshold Computation第108-109页
        5.3.6 Multi-Stage Classification Process第109-110页
        5.3.7 Background Model Samples Update第110-112页
    5.4 EXPERIMENTS AND ANALYSIS第112-129页
        5.4.1 Experiments Description第112页
        5.4.2 Dataset Presentation and Evaluation Metrics第112-114页
        5.4.3 Parameters Settings第114-115页
        5.4.4 Results Presentation第115-121页
        5.4.5 Analysis and Discussion第121-129页
    5.5 COMPUTATIONAL PERFORMANCES第129-130页
        5.5.1 Computation complexity第129页
        5.5.2 Data Structure第129-130页
    5.6 CONCLUSION第130-132页
CHAPTER 6: SUMMARY AND CONCLUSIONS第132-144页
    6.1 GENERAL CONCLUSION第132-134页
    6.2 PERSPECTIVES第134-144页
RESEARCH OUTCOMES第144-145页
Dedication第145-146页
ACKNOWLEDGEMENT第146-147页
VITA第147页

论文共147页,点击 下载论文
上一篇:几类延迟微分方程及数值离散系统的耗散性和稳定性研究
下一篇:水源涵养林健康评价模型研究--以孟家岗林场为例