首页--工业技术论文--化学工业论文--硅酸盐工业论文--水泥工业论文--基础理论论文

复合水泥水化和微观结构HYMOSTRUC3D-E模型的建立及水泥浆体自收缩的模拟研究

摘要第5-9页
ABSTRACT第9-13页
博士学位论文中文缩写版和英文版撰写说明第19-20页
中文部分第20-100页
    1. 研究背景与意义第20-26页
        1.1 水泥水化和微观结构模拟研究现状第20-23页
        1.2 水泥浆体自收缩模拟研究现状第23-25页
        1.3 研究内容与意义第25-26页
    2. 研究思路第26-28页
        2.1 HYMOSTRUC3D-E模型开发思路第26-27页
        2.2 微观尺度水泥浆体自收缩模型开发思路第27-28页
    3. 主要研究工作与进展第28-95页
        3.1 HYMOSTRUC3D-E模型水化模块的建立及实验验证第28-68页
        3.2 HYMOSTRUC3D-E微观结构模块的建立及实验验证第68-86页
        3.3 HYMOSTRUC3D-E和HYMOSTRUC3D模型的比较第86页
        3.4 微观尺度硅酸盐水泥和复合水泥浆体自收缩模型的建立及实验验证第86-95页
    4. 结论第95-100页
        4.1 研究成果第95-97页
        4.2 创新点第97-98页
        4.3 展望第98-100页
英文部分第100-281页
    Chapter 1 General Introduction第100-105页
        1.1 Background第100-102页
        1.2 Objectives第102-103页
        1.3 Outline of this thesis第103-105页
    Chapter 2 Numerical models for hydration and microstructure of Portland and blendedcements – A literature survey第105-118页
        2.1 Introduction第105页
        2.2 Numerical models for hydration and microstructure of hardening pure cementcomponents and Portland cements第105-115页
            2.2.1 Categorisation of models第105-106页
            2.2.2 Continuum models第106-113页
            2.2.3 Pixel models第113-115页
        2.3 Numerical models of hydration and microstructure of blended cements第115-117页
        2.4 Summary of this chapter第117-118页
    Chapter 3 Simulation model for hydration and microstructure development of blendedcements: Part I Cement hydration module第118-162页
        3.1 Introduction第118-122页
            3.1.1 Chemistry of reactants (PC, BFS and FA)第119-121页
            3.1.2 Structure of the simulation model第121-122页
        3.2 Cement hydration module第122-160页
            3.2.1 Hydration sub-module第122-142页
            3.2.2 Pore solution chemistry sub-module第142-155页
            3.2.3 Interaction sub-module第155-160页
        3.3 Summary of this chapter第160-162页
    Chapter 4 Simulation model for hydration and microstructure development of blendedcements: Part II Microstructure development module第162-189页
        4.1 Introduction第162页
        4.2 Microstructure development module第162-186页
            4.2.1 Main assumptions第162-165页
            4.2.2 Cement particle growth sub-module第165-167页
            4.2.3 CH particle growth sub-module第167-175页
            4.2.4 Volumes of individual phases in the 3D microstructure of cement paste第175-176页
            4.2.5 Multi-scale pore structure sub-module第176-186页
        4.3 Summary of HYMOSTRU3D-E第186-189页
    Chapter 5 Validation of the numerical model for hydration and microstructure of blendedcements第189-240页
        5.1 Introduction第189-190页
        5.2 Mono system: pure PC第190-201页
            5.2.1 Input parameters第190-192页
            5.2.2 Reduction factors in HYMOSTRUC3D and HYMOSTRUC3D-E第192-195页
            5.2.3 Degree of hydration of PC第195-196页
            5.2.4 Microstructure development of PC paste第196-201页
        5.3 Binary system: PC blended with BFS第201-218页
            5.3.1 Input parameters第201-203页
            5.3.2 Degree of hydration or pozzolanic reaction第203-210页
            5.3.3 Microstructure development of blended cement paste第210-213页
            5.3.4 Pore solution chemistry第213-218页
        5.4 Binary system: PC blended with FA第218-227页
            5.4.1 Input parameters第218-220页
            5.4.2 Degree of hydration or pozzolanic reaction第220-224页
            5.4.3 Microstructure development of fly ash cement paste第224-226页
            5.4.4 CH content in cement paste第226-227页
        5.5 Chemical shrinkage of PC and blended cements第227-237页
            5.5.1 Raw materials and mixture design第227-229页
            5.5.2 Experiments第229-232页
            5.5.3 Modelling with HYMOSTRUC3D-E第232-233页
            5.5.4 Degree of hydration and chemical shrinkage of PC pastes第233-234页
            5.5.5 Degree of hydration and chemical shrinkage of blended cement pastes第234-237页
        5.6 Concluding remarks第237-240页
    Chapter 6 Improvement of autogenous shrinkage measurement for cement paste at very earlyage: Corrugated tube method第240-249页
        6.1 Introduction第240-243页
        6.2 Introduction of the set-up第243-244页
        6.3 Verification of transformation ratio (volume deformation to length change)第244-245页
        6.4 Experiment and validation第245-248页
        6.5 Summary of this method第248-249页
    Chapter 7 Model for simulating the autogenous shrinkage of hardening Portland cement pasteand blended cement paste at the microscale第249-274页
        7.1 Introduction第249-252页
        7.2 Experiments第252-253页
            7.2.1 Introduction第252页
            7.2.2 Internal relative humidity第252-253页
            7.2.3 Autogenous shrinkage第253页
        7.3 Modelling approach第253-259页
            7.3.1 Self-desiccation module第254页
            7.3.2 Capillary pressure module第254-255页
            7.3.3 Simulation of autogenous shrinkage of cement paste第255-257页
            7.3.4 Discrete algorithm for calculating autogenous shrinkage of hardening cement paste第257-259页
        7.4 Simulation results and discussions第259-273页
            7.4.1 Simulation for pure Portland cement pastes第259-265页
            7.4.2 Simulation for blended cement paste第265-273页
        7.5 Summary of this chapter第273-274页
    Chapter 8 Conclusions and outlooks第274-281页
        8.1 Conclusions第274-278页
            8.1.1 Conclusions related to the extensions of HYMOSTRUC3D model第274-277页
            8.1.2 Conclusions related to the model for simulating the autogenous shrinakge of purePortland cement paste and blended cement paste第277-278页
        8.2 Outlooks第278-281页
            8.2.1 Potentials of HYMOSTRUC3D-E第278-279页
            8.2.2 Recommendations for further research第279-281页
Reference第281-292页
List of Abbreviations第292-293页
List of Symbols第293-298页
Appendix第298-348页
    A: Reactions of PC, BFS and FA particles in the system第298-320页
        A.1 Definition of representative elementary volume of cement paste第298-299页
        A.2 Calculation of weight of PC, BFS, and FA in REV第299页
        A.3 Description of particle size distribution of PC, BFS and FA第299-302页
        A.4 Calculation of number of PC, BFS and FA particles in the REV of cement paste .. 283A.5 Diameter of hollow core in FA particles第302页
        A.5 Diameter of hollow core in FA particles第302页
        A.6 Definition of cell and shell第302-308页
        A.7 Reactions rates of PC, BFS and FA第308-320页
    B: Degree of hydration of blended cements第320-323页
        B.1 Degree of hydration of PC第320-321页
        B.2 Degrees of pozzolanic reactions of BFS and FA第321-323页
    C: Volume of individual phases calculated based on stoichiometry第323-336页
        C.1 Volume evolution of hydrating PC第323-330页
        C.2 Volume evolution of reacting BFS第330-332页
        C.3 Volume evolution of reacting FA第332-334页
        C.4 Total volume evolution in the system第334-336页
    D: Volume ratio of products to reactants第336-337页
        D.1 Volume increase ratio of a PC particle第336页
        D.2 Volume increase ratio of a BFS particle第336页
        D.3 Volume increase ratio of a FA particle第336-337页
    E: Extra growth thickness of particles第337-343页
        E.1 Extra growth thickness of a PC particle第337-340页
        E.2 Extra growth thickness of a BFS particle第340-341页
        E.3 Extra growth thickness of a FA particle第341-343页
    F: Thermodynamic equations of ions in the pore solution第343-347页
    G: Densities and molar mass of phases in the simulation第347-348页
攻读博士学位期间取得的研究成果第348-353页
致谢第353-356页
附件第356页

论文共356页,点击 下载论文
上一篇:现代建筑语境中的材料策略研究
下一篇:湿热地区城市慢行空间热环境研究