首页--农业科学论文--农作物论文--经济作物论文--油料作物论文--油菜籽(芸薹)论文

5-氨基乙酰丙酸缓解镉胁迫下油菜植株生长、生理、分子和超微结构变化的作用机理研究

ACKNOWLEDGEMENTS第11-19页
ABBREVIATIONS第19-21页
ABSTRACT第21-22页
摘要第24-26页
CHAPTER 1 GENERAL INTRODUCTION第26-31页
    1.1 Importance of oilseed rape第26页
    1.2 Essential and non-essential elements第26-27页
    1.3 Cadmium(Cd)-a toxic and non-essential element第27-28页
    1.4 Solutions to solve heavy metals problem第28-29页
    1.5 Objectives of study第29-30页
    1.6 Overview of the whole study第30-31页
CHAPTER 2 REVIEW OF LITERATURE第31-42页
    2.1 What is stress?第31页
    2.2 Cd stress第31-32页
    2.3 Impacts of Cd on human第32页
    2.4 Impacts of Cd on plants第32-35页
        2.4.1 Uptake and transport of Cd in plants第32-33页
        2.4.2 Effects of Cd on plant growth第33页
        2.4.3 Effects of Cd on photosynthesis第33-34页
        2.4.4 Effects of Cd on plant nutrition第34-35页
        2.4.5 Effects of Cd on ultra-morphology of plants第35页
    2.5 ROS production and their scavenging第35-37页
    2.6 Roles of 5-aminolevulinic acid(ALA)第37-42页
        2.6.1 Structure,properties and biosynthesis of ALA第37-39页
        2.6.2 Applications of ALA under abiotic stress第39页
        2.6.3 Role of ALA in plant growth第39-40页
        2.6.4 Role of ALA in stress tolerance of plants第40-42页
CHAPTER 3 MORPHO-PHYSIOLOGICAL AND ULTRA-STRUCTURAL CHANGES INDUCED BY CADMIUM STRESS IN OILSEED RAPE SEEDLINGS第42-56页
    3.1 Introduction第42-43页
    3.2 Materials and methods第43-46页
        3.2.1 Plant material and treatments第43-44页
        3.2.2 Growth parameters第44页
        3.2.3 Determination of malondialdehyde and reactive oxygen species第44页
        3.2.4 Biochemical analysis第44-45页
        3.2.5 Determination of Cd concentration第45页
        3.2.6 Ultra-structural study第45-46页
        3.2.7 Statistical analysis第46页
    3.3 Results第46-53页
    3.4 Discussion第53-55页
    3.5 Conclusions第55-56页
CHAPTER 4 5-AMINOLEVULINIC ACID AMELIORATES ELEMENTS UPTAKE, ANTIOXIDANT ENZYMEACTIVITY AND ULTRA-MORPHOLOGICAL CHANGES UNDER CADMIUM STRESS IN OILSEEDRAPE第56-83页
    4.1 Introduction第56-58页
    4.2 Materials and methods第58-61页
        4.2.1 Plant material and treatments第58-59页
        4.2.2 Morphological parameters第59页
        4.2.3 Determination of elements uptake第59-60页
        4.2.4 Biochemical analysis第60页
        4.2.5 Microscopic analysis第60页
        4.2.6 Statistical analysis第60-61页
    4.3 Results第61-78页
    4.4 Discussion第78-82页
    4.5 Conclusions第82-83页
CHAPTER 5 5-AMINOLEVULINIC ACID MITIGATES CADMIUM-INDUCED CHANGES IN OILSEED RAPE ASREVEALED BY BIOCHEMICAL AND ULTRA-STRUCTURAL EVALUATION OF ROOTS第83-101页
    5.1 Introduction第83-85页
    5.2 Materials and methods第85-87页
        5.2.1 Plant material第85页
        5.2.2 Morphological attributes第85-86页
        5.2.3 Analysis of lipid peroxidation and reactive oxygen species第86页
        5.2.4 Enzyme activities measurements第86页
        5.2.5 Microscopic study第86-87页
        5.2.6 Statistical analysis第87页
    5.3 Results第87-98页
    5.4 Discussion第98-100页
    5.5 Conclusions第100-101页
CHAPTER 6 5-AMINOLEVULINIC ACID REGULATES CADMIUM-INDUCED METABOLIC AND PROTEOMICCHANGES IN OILSEED RAPE第101-126页
    6.1 Introduction第101-103页
    6.2 Materials and methods第103-107页
        6.2.1 Plant material and growth conditions第103页
        6.2.2 Osmotic potential and relative water content第103-104页
        6.2.3 Soluble sugar, free amino acid and proline contents第104页
        6.2.4 Measurements of chlorophyll fluorescence parameters第104-105页
        6.2.5 Determination of relative electrolyte leakage第105页
        6.2.6 Protein extraction, visualization and quantification studies第105-107页
            6.2.6.1 Soluble protein extraction and 2-DE analysis第105页
            6.2.6.2 Protein visualization, image analysis and quantification第105-106页
            6.2.6.3 Peptide and protein identification by database search第106-107页
        6.2.7 Statistical analysis第107页
    6.3 Results第107-119页
        6.3.1 ALA improves the metabolic changes under Cd stress第107页
        6.3.2 ALA up-regulates the Cd-induced fluorescence parameters第107-108页
        6.3.3 Cd-induced proteomic changes in B. napus leaves and alleviation through ALA第108-119页
            6.3.3.1 Classification of identified protein spots第108-111页
            6.3.3.2 Functional distribution of the identified proteins第111-115页
            6.3.3.3 Identified proteins under Cd stress conditions第115页
            6.3.3.4 ALA alleviates proteomic changes under Cd stress第115-119页
    6.4 Discussion第119-125页
        6.4.1 ALA alleviates the Cd stress and improves the metabolic changes in B. napus第119-120页
        6.4.2 ALA improves the Cd-induced photosynthetic fluorescence changes第120-121页
        6.4.3 Proteomic features of B. napus leaves under the application of ALA and Cd第121-125页
            6.4.3.1 CO_2 assimilation/photosynthesis第121-122页
            6.4.3.2 Protein synthesis and regulation第122页
            6.4.3.3 Carbohydrate metabolism第122-123页
            6.4.3.4 Stress related proteins第123页
            6.4.3.5 Redox homeostasis,defense and transport proteins第123-124页
            6.4.3.6 ALA-induced regulated proteins under Cd stress第124-125页
    6.5 Conclusions第125-126页
CHAPTER 7 MAJOR FINDINGS AND FUTURE PERSPECTIVES第126-128页
    7.1 Major findings第126-127页
    7.2 Future perspectives第127-128页
REFERENCES第128-148页
List of Publications第148页

论文共148页,点击 下载论文
上一篇:花生属异源多倍化早期遗传变化规律研究
下一篇:玉米LEA蛋白基因ZmDHN13,ZmLEA3和ZmLEA5C的分离与功能分析