首页--生物科学论文--生物工程学(生物技术)论文--仿生学论文--生物信息论论文

P值的不稳定性与其他因素对统计特征选择的影响

摘要第3-7页
abstract第7-8页
Chapter1 Introduction第12-48页
    1.1 The P value variability is an enormous challenge in statistical analysis第12-24页
        1.1.1 Rapid development of bioinformatics第12-13页
        1.1.2 Advance of the biotechnology in biological and clinical analysis第13-17页
        1.1.3 Statistical feature-selection techniques in biological and clinical analysis第17-19页
        1.1.4 The P value variability in statistical feature-selection methods第19-24页
    1.2 The relevance of power and reproducibility第24-35页
        1.2.1 Variability is an inherent nature for P value第24-25页
        1.2.2 Impact of P value variability on reproducibility in genomics第25-26页
        1.2.3 Impact of P value variability on reproducibility in proteomics第26-29页
        1.2.4 Multiple factors have influence on power第29-32页
        1.2.5 Power can be raised by Network-based methods第32-35页
    1.3 Overlooked issues in feature selection for omics data analysis第35-48页
        1.3.1 Research on comparative statistical feature-selection methods第35-40页
        1.3.2 Normalization methods第40-42页
        1.3.3 Multiple testing corrections第42-44页
        1.3.4 Data heterogeneity第44-48页
Chapter2 Experimental section第48-58页
    2.1 Sample-to-sample P value variability第48-51页
        2.1.1 Dataset design第48-50页
        2.1.2 Statistical feature-selection methods第50-51页
    2.2 How do P values vary in multivariate analysis第51-52页
        2.2.1 Dataset design第51页
        2.2.2 Studemt's two-sample t-test第51-52页
    2.3 Some overlooked issues in univariate statistical feature selection in omics data第52-58页
        2.3.1 Dataset design第52-54页
        2.3.2 Univariate statistical feature-selection methods第54-55页
        2.3.3 Normalization methods(upstream)第55-56页
        2.3.4 Multiple test corrections(downstream)第56-58页
Chapter3 P value variability and its implications in multiple testing第58-74页
    3.1 Results第58-71页
        3.1.1 P value variability of t-test第58-65页
        3.1.2 P value variability of U test第65-69页
        3.1.3 The t-test P value is more variable第69页
        3.1.4 Impacts of P value instability in feature selection– a toy example第69-70页
        3.1.5 Impacts of P value instability in feature selection– a real clear cell renal第70-71页
    3.2 Discussions第71-72页
        3.2.1 The t-test is pretty powerful,even in the non-normal or mixed scenarios第71-72页
        3.2.2 Implications for P value instability in biological gene or protein selection第72页
    3.3 Conclusions第72-74页
Chapter4 With great power comes great reproducibility第74-82页
    4.1 Results– P value and effect size variability第74-76页
    4.2 Discussions第76-82页
        4.2.1 Signal boosting transformations(SBTs)第76-77页
        4.2.2 Network-based statistical testing(NBST)第77-78页
        4.2.3 Additional metrics第78-79页
        4.2.4 Determination of phenotypic-relevance is more important第79-82页
Chapter5 Implications of upstream/downstream process for feature selection第82-100页
    5.1 Results第84-97页
        5.1.1 Impact of normalization methods for simulated and real datasets第84-88页
        5.1.2 Impact of multiple testing corrections for simulated and real datasets第88-93页
        5.1.3 Impact of normalization methods/multiple testing corrections for data with varying heterogeneity第93-97页
    5.2 Discussions第97-99页
        5.2.1 Univariate statistical feature-selection outcome depends strongly on the normalization methods第97-98页
        5.2.2 Dangerous of multiple testing corrections,especially for small sample size data第98页
        5.2.3 Different heterogeneity has impact on the consequence of normalization methods/multiple testing corrections第98-99页
    5.3 Conclusions第99-100页
Chapter6 Conclusion and outlook第100-102页
    6.1 Conclusion第100页
    6.2 Outlook第100-102页
References第102-117页
Notes on publications and participation in scientific research第117-118页
Acknowledgements第118页

论文共118页,点击 下载论文
上一篇:拟南芥对不同浓度铜离子的生长发育应答
下一篇:APOBEC3H蛋白对SVA反转座作用的调控机制研究