首页--工业技术论文--自动化技术、计算机技术论文--遥感技术论文--遥感图像的解译、识别与处理论文--图像处理方法论文

基于光谱和空间信息的高光谱图像分类

摘要第5-7页
ABSTRACT第7-9页
Table of notations第10-12页
List of abbreviations第12-22页
1 Introduction第22-32页
    1.1 Overview on remote sensing systems第22-23页
    1.2 Overview on the last generation of remote sensing imaging systems第23-24页
    1.3 Overview on hyperspectral image classification第24-27页
    1.4 Motivation, objective and novel contributions of this thesis第27-29页
    1.5 Structure of the thesis第29-32页
2 Support Vector Machines in depth第32-64页
    2.1 Introduction第32-33页
    2.2 Loss Functions第33-39页
    2.3 Support Vectors第39-49页
    2.4 Kernel Methods第49-59页
    2.5 Experiments with SVM第59-62页
    2.6 Conclusion第62-64页
3 Systematic comparison study of Linear Feature Extraction methods for classification of hyperspectral images with noise第64-78页
    3.1 Introduction第64-67页
    3.2 Selected Linear Feature Extraction techniques第67-71页
    3.3 Three types of image noises第71-72页
    3.4 Experiment and results第72-77页
    3.5 Conclusion第77-78页
4 Extended Morphological Profiles with duality for hyperspectral image classification第78-94页
    4.1 Introduction第78-79页
    4.2 Extended Morphological Profiles with duality第79-82页
    4.3 Linear Filtering第82-83页
    4.4 Experiment and results第83-93页
    4.5 Conclusion第93-94页
5 Marker Selection using SVM over-fitting and skeletonization for very lowtraining sample analysis of hyperspectral image classification第94-114页
    5.1 Introduction第94-96页
    5.2 Marker selection using SVM over-fitting第96-98页
    5.3 Marker selection using skeletonization第98-101页
    5.4 Experiment and results第101-111页
    5.5 Conclusion第111-114页
6 Classification using iterative support vector machine with spatial-spectral information第114-124页
    6.1 Introduction第114-115页
    6.2 Iterative Support Vector Machine第115-116页
    6.3 Proposed approach第116-119页
    6.4 Experiment and results第119-123页
    6.5 Conclusion第123-124页
7 Conclusion第124-128页
    7.1 Summary and discussion第124-126页
    7.2 Concluding remarks and future development第126-128页
Appendix A:Data sets第128-134页
    A.1 AVIRIS data sets第128-130页
    A.2 ROSIS data sets第130-134页
Appendix B:Nonlinear Nonparametric Supervised Feature Extraction techniques第134-138页
    B.1 Decision Boundary Feature Extraction第134-135页
    B.2 Nonparametric Weighted Feature Extraction第135-138页
References第138-152页
Publications第152-154页
Acknowledgements第154-155页

论文共155页,点击 下载论文
上一篇:中小企业践行社会主义核心价值观研究--以Z公司为例
下一篇:Deep Level Traps and Annealing Effects in Indium and Lead Co-doped Cd0.9Zn0.1Te Single Crystal