首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--检索机论文

推荐系统精度提高的实用方法

Abstract第6-7页
摘要第8-12页
CHAPTER 1 INTRODUCTION第12-21页
    1.1 WHAT ARE RECOMMENDER SYSTEMS?第12-14页
    1.2 MOTIVATION第14-19页
    1.3 PROBLEM STATEMENT第19页
    1.4 RESEARCH OBJECTIVE第19-20页
    1.5 CONTRIBUTIONS第20页
    1.6 THESIS OUTLINE第20-21页
CHAPTER 2 BASICS AND RELATED WORK第21-37页
    2.1 FORMALIZATION OF RECOMMENDATION PROBLEM第21-23页
    2.2 USERS' AND ITEMS' PROFILES第23-24页
    2.3 CLASSIFICATION OF RECOMMENDER SYSTEMS第24-33页
        2.3.1 Collaborative Filtering(Cf)Recommender Systems第25-30页
            2.3.1.1 Memory-Based CF第26-28页
            2.3.1.2 Model-based CF第28-29页
            2.3.1.3 ADVANTAGES AND DISADVANTAGES OF CF RECOMMENDER SYSTEMS第29-30页
        2.3.2 Content-Based Filtering(CBF)recommender systems第30-31页
            2.3.2.1 ADVANTAGES AND DISADVANTAGES OF CBF RECOMMENDER SYSTEMS第31页
        2.3.3 Knowledge-Based(Kb)Recommender Systems第31-32页
        2.3.4 Demographic-Based(Dm)Recommender Systems第32-33页
        2.3.5 Hybrid Recommender Systems第33页
        2.3.6 Other Types Of Recommender Systems第33页
    2.4 RELATED WORK第33-35页
    2.5 OUR PROPOSED WORK第35-37页
CHAPTER 3 HYBRID RECOMMENDER SYSTEMS第37-46页
    3.1 INTRODUCTION第37页
    3.2 BACKGROUND第37页
    3.3 NAIVE BAYES CLASSIFIER第37-39页
    3.4 SUPPORT VERCTOR MACHINES(SVM)第39-40页
    3.5 COMBINING THE ITEM-BASED CF AND CLASSIFICATION APPROACHES FORIMPROVED RECOMMENDATIONS第40-41页
    3.6 COMBINING THE ITEM-BASED CF AND THE NAIVE BAYES CLASSIFIER(SWITCHREC CFNB)第41-44页
    3.7 COMBINING THE ITEM-BASED CF AND THE SVM CLASSIFIER(SWITCHRECCFSVM)第44-46页
CHAPTER 4 EVALUATION AND RESULTS第46-61页
    4.1 DATASETS第46-47页
    4.2 GETTING ADDITIONAL FEATURES ABOUT MOVIES第47-48页
    4.3 EVALUATION METRICS第48-54页
        4.3.1 Mean Absolute Error (MAE) And Related Metrics第50页
        4.3.2 Receiver Operating Characteristic (ROC)-Sensitivity第50-51页
        4.3.3 Precision, Recall, And F1 Measure第51-52页
        4.3.4 Coverage第52-53页
        4.3.5 Other Metrics第53-54页
        4.3.6 Evaluation From The User'S Point Of View第54页
    4.4 PRESENTING RECOMMENDATIONS TO USERS第54页
    4.5 EVALUATION METHODOLOGY第54-55页
    4.6 RESULTS AND DISCUSSION第55-61页
        4.6.1 Learning The Optimal System Parameters第55-57页
        4.6.2 Performance Evaluation With Other Algorithms第57-60页
        4.6.3 Eliminating Over-Specialization Problem第60-61页
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS第61-64页
    5.1 CONCLUSIONS第61-63页
    5.2 FUTURE WORK第63-64页
REFERENCES第64-71页
ACKNOWLEDGMENTS第71页

论文共71页,点击 下载论文
上一篇:基于GPU加速的车辆检测及跟踪的研究与实现
下一篇:主动式RFID防碰撞算法及安全认证机制研究