首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Beyond Camera Limits:Image Enhancement by Miso Image Super Resolution

Abstract第6-7页
Dedication第8-12页
List of Tables第12-13页
List of Figures第13-16页
List of Abbreviations第16-18页
Chapter 1:Introduction第18-41页
    1.1 Background第18-22页
    1.2 A Few Lines about Resolution第22-24页
    1.3 Super Resolution Problem Definition第24-27页
        1.3.1 Super Resolution as an Inverse Engineering Problem第26页
        1.3.2 Super Resolution as an Ill-Posed Problem第26-27页
    1.4 Common Pitfalls in Image Super Resolution第27-29页
    1.5 Applications of Image Super Resolution第29-31页
    1.6 Researcher's Contribution to Image Super Resolution第31-33页
    1.7 Research Motivations第33页
    1.8 Research Objectives第33-34页
    1.9 Scope of the Thesis第34-35页
    1.10 Author's Contribution第35-39页
    1.11 Dissertation Outline第39-41页
Chapter 2:Grid Analysis of MISO Image Super resolution Techniques第41-83页
    2.1 Chapter Motivation第42页
    2.2 Image Degradation Factors第42-46页
    2.3 Observation Model第46-49页
        2.3.1 Mathematical Model第47-49页
    2.4 Classical Restoration Methods第49-55页
        2.4.1 Nearest Neighbor Interpolation第52-53页
        2.4.2 Bilinear Interpolation第53-54页
        2.4.3 Bicubic Interpolation第54-55页
    2.5 Classification of MISO Super resolution Techniques第55-72页
        2.5.1 Frequency Domain Methods第57-61页
        2.5.2 Spatial Domain Methods第61-72页
            2.5.2.1 Non-Uniform Interpolation Methods第61-63页
            2.5.2.2 Iterative Back Projection第63-66页
            2.5.2.3 Projection Onto Convex Sets第66-69页
            2.5.2.4 MAP Reconstruction Methods第69-72页
        2.5.3 Comparison of Frequency Domain and Spatial Domain Techniques第72页
    2.6 The Central Role of Grid Analysis第72-74页
    2.7 Simulation Results第74-82页
        2.7.1 Using Noiseless Data第76页
        2.7.2 Using Noise Corrupted Data第76-81页
        2.7.3 Quantitative Assessment第81-82页
    2.8 Chapter Summary and Conclusions第82-83页
Chapter 3:Efficient Use of Curvelets in MISO Image Super resolution第83-102页
    3.1 Introduction第84-87页
    3.2 Chapter Motivation第87页
    3.3 Related Background第87-92页
        3.3.1 Brief History第87-88页
        3.3.2 Salient Features第88-90页
        3.3.3 Applications第90页
        3.3.4 Mathematical Background第90-92页
        3.3.5 Kurtosis of an image第92页
    3.4 Proposed Algorithm第92-94页
    3.5 Experimental Result and Performance Evaluation第94-96页
    3.6 Chapter Summary and Conclusions第96-102页
Chapter 4:Exploiting Optimal Selection of Inputs in MISO Super resolution第102-113页
    4.1 Chapter Motivation第103页
    4.2 Performance limiting Factors第103-104页
    4.3 Proposed Strategy第104-108页
    4.4 Simulation Results第108-112页
    4.5 Chapter Summary and Conclusions第112-113页
Chapter 5:Super resolution Reconstruction for Video Surveillance第113-129页
    5.1 Introduction第114-117页
    5.2 Chapter Motivation第117-118页
    5.3 Video Surveillance and it's Importance第118-119页
    5.4 Role of Super Resolution in Video Surveillance第119-120页
    5.5 Proposed Integrated SRVS Algorithm第120-122页
    5.6 Experimental Result and Performance Evaluation第122-128页
    5.7 Chapter Summary and Conclusions第128-129页
Chapter 6:Handling the Quality Issues in MISO Image Super resolution第129-145页
    6.1 Introduction and Chapter Motivation第130-131页
    6.2 Quality Assessment Methods第131-132页
    6.3 Full Reference Quality Assessment Metrics第132-133页
    6.4 The Methodology第133-135页
        6.4.1 Point of Saturation第134页
        6.4.2 Point of Cut off第134-135页
        6.4.3 Limitations of the Study第135页
    6.5 Simulation Results and Related Discussions第135-143页
    6.6 Chapter Summary and Future Work第143-145页
Chapter 7:Conclusions and Future Work第145-149页
    7.1 Research Contributions第145-147页
    7.2 Future Work第147-149页
Bibliography第149-160页
List of Publications第160-162页
Acknowledgements第162页

论文共162页,点击 下载论文
上一篇:一阶双曲方程和对流占优扩散方程的耗散谱元法
下一篇:Niaspan促进1型糖尿病大鼠脑卒中后神经轴索重塑