摘要 | 第5-7页 |
ABSTRACT | 第7-8页 |
CHAPTER 1: INTRODUCTION | 第12-26页 |
1.1. Research Profile | 第12-17页 |
1.1.1. High-Speed Railway Development | 第12-14页 |
1.1.2. The Bridge with High Piers Development | 第14-15页 |
1.1.3.Structure Characteristics and Technical Requirements of High-Speed RailwayBridge | 第15-17页 |
1.2. Health Monitoring System on High-Speed Railway Bridge | 第17-21页 |
1.2.1. Health Monitoring Characteristics of High-Speed Railway Bridge | 第17页 |
1.2.2. Health Monitoring Problems of High-Speed Railway Bridge | 第17-19页 |
1.2.3. Health Monitoring System Design of High-Speed Railway Bridge | 第19-21页 |
1.3. Research Methods of Health Monitoring System Optimal Placement | 第21-24页 |
1.3.1. The Necessity of Health Monitoring System Optimal Placement | 第21-22页 |
1.3.2. Optimal Sensor Placement Criterion | 第22-23页 |
1.3.3. Optimal Sensor Placement Methods | 第23-24页 |
1.4. Thesis Main Contents | 第24-26页 |
CHAPTER 2: DYNAMIC RESPONSE ANALYSIS OF HIGH-SPEED RAILWAY BRIDGEWITH HIGH PIERS | 第26-62页 |
2.1. Vehicle-Bridge Coupling Vibration Theory | 第26-28页 |
2.1.1. Classical Theory | 第27-28页 |
2.1.2. Modern Theory | 第28页 |
2.2. Vehicle-Bridge Dynamic Model Design | 第28-43页 |
2.2.1. Wheel-Track Relationship | 第28-30页 |
2.2.2. Vehicle-Bridge System Dynamic Equation | 第30-43页 |
2.3. Evaluation Standard of Train Operation Safety and Comfort | 第43-48页 |
2.3.1. Train Safety Standard | 第44-46页 |
2.3.2. Train Operation Comfort Standard | 第46-48页 |
2.4. The Actual Engineering Model Design | 第48-50页 |
2.4.1. Time History Analysis Method Based on Midas Civil Software | 第48-49页 |
2.4.2. Engineering Introduction | 第49页 |
2.4.3. Bridge Finite Element Model | 第49-50页 |
2.5. Bridge System Dynamic Response Analysis | 第50-60页 |
2.5.1. Basic characteristic of static force | 第50-53页 |
2.5.2. Bridge Dynamic Response Analysis | 第53-60页 |
2.6. Conclusions | 第60-62页 |
CHAPTER 3: OPTIMIZATION PLACEMENT OF HEALTH MONITORING SYSTEM ONHIGH-SPEED RAILWAY BRIDGE HIGH PIERS | 第62-72页 |
3.1. Dynamic Analysis and Health Monitoring System Relationship | 第62-63页 |
3.2. Optimal Sensor Placement Contents | 第63-65页 |
3.3. Optimal Sensor Placement Methods | 第65-72页 |
3.3.1. Determination the Number of Structure Target Modes Based on Fisher InformationMatrix | 第65-67页 |
3.3.2. Optimal Sensor Number and Position Based on Modal Assurance Criterion Method | 第67-68页 |
3.3.3. Optimal Sensor Position Based on Effective Independent Method | 第68-72页 |
CHAPTER 4: OPTIMIZATION PLACEMENT OF HEALTH MONITORING SYSTEM INREAL APPLICATION | 第72-94页 |
4.1. Health Monitoring System Contents and Sensor Types Selection | 第72-73页 |
4.2. Finite Element Model | 第73-75页 |
4.3. Optimal Sensor Placement on Bridge Girder | 第75-84页 |
4.3.1. The Number of Target Mode Optimization | 第81页 |
4.3.2. The Optimization of Sensor Based on Modal Assurance Criterion Method | 第81-83页 |
4.3.3. The Optimization of Sensor Based on Effective Independent Method | 第83-84页 |
4.4. Optimal Sensor Placement on Bridge Pires | 第84-90页 |
4.4.1. Optimal Sensor Placement on Bridge Second Pier | 第84-87页 |
4.4.2. Optimal Sensor Placement on Bridge Third Pier | 第87-90页 |
4.5. Optimal Sensor Placement on Full Bridge | 第90-92页 |
4.6. Conclusions | 第92-94页 |
CHAPTER 5: CONCLUSIONS AND FURTHER WORKS | 第94-96页 |
5.1. Conclusions | 第94-95页 |
5.2. Further Works | 第95-96页 |
ACKNOWLEDGEMENTS | 第96-97页 |
REFERENCES | 第97-102页 |
RESEACH ACHIVEMENTS DURING THE MASTER DEGREE | 第102页 |