首页--交通运输论文--水路运输论文--各种船舶论文--军用舰艇(战舰)论文--特种舰艇论文--登陆舰(艇)论文

Initial Design of High Speed Landing Craft PACSCAT

摘要第5-6页
ABSTRACT第6页
ACKNOWLEDGMENTS第7-18页
CHAPTER 1 INTRODUCTION第18-26页
    1.1 Purpose and Significance of Current Research Work第18-19页
    1.2 Method第19页
    1.3 Vision第19-22页
        1.3.1 Technical Vision第19-20页
        1.3.2 Tactical Vision第20-22页
    1.4 Specification of Requirements第22-24页
        1.4.1 Cargo Vehicles第22-23页
        1.4.2 Landing Platform Dock,LPD第23-24页
    1.5 Conclusion第24-25页
    1.6 Chapter Summary第25-26页
CHAPTER 2. CONCEPT第26-37页
    2.1 Classification of Ship Borne Landing Craft第26页
    2.2 Development of Ship Borne Landing Craft第26-30页
        2.2.1 Conventional Flat-Bottomed Barge-type Landing Craft第26-27页
        2.2.2 Landing Craft Air Cushion(LCAC)第27-28页
        2.2.3 Catamaran Concept of Landing Craft第28-29页
        2.2.4 Surface Effect Ship(SES)Type Landing Craft第29-30页
        2.2.5 Conclusion(Selection of Hull form)第30页
    2.3 Modern Technologies Available With High Speed Crafts第30-36页
        2.3.1 Micro Bubble Technology第30-31页
        2.3.2 Under Water Lifting Body(Hydro foils and Aft Cross foils Concept)第31-33页
        2.3.3 Partial Air Cushion Supported Catamaran(PACSCAT)第33-34页
        2.3.4 Conclusion(Selection of Innovative technology)第34-35页
        2.3.5 The Concept of High Speed Landing Craft(PACSCAT)第35-36页
    2.4 Chapter Summary第36-37页
CHAPTER 3. INITIAL DESIGN AND MAXSURF MODELING第37-52页
    3.1 Parametric Analysis第37-42页
        3.1.1 Selection of Principle Dimensions第38页
        3.1.2 Selection of Demi Hull Dimensions第38-42页
    3.2 General Arrangement第42-43页
    3.3 Introduction to 3D Modeling in Naval Architecture第43页
    3.4 Maxsurf第43页
    3.5 PACSCAT Modeling in Maxsurf第43-48页
        3.5.1 Maxsurf Solid Hull Modeling第43-45页
        3.5.2 Maxsurf Hull Model Lines Plan第45-46页
        3.5.3 Curve of Cross Sectional Areas第46-48页
    3.6 3D Modeling of PACSCAT by Pro-Engineering第48-51页
    3.7 Chapter Summary第51-52页
CHAPTER 4. RESISTANCE CALCULATIONS OF PACSCAT第52-60页
    4.1 Wave Making Resistance,第53-54页
    4.2 Aerodynamic Profile Resistance第54-55页
    4.3 Skirt Drag第55-56页
    4.4 Sidewalls Friction Resistance第56-57页
    4.5 Total Resistance of PACSCAT第57-59页
    4.6 Chapter Summary第59-60页
CHAPTER 5. POWERING,PROPULSION AND AIR CUSHION SYSTEM第60-71页
    5.1 Selection of Main Engine第62-64页
        5.1.1 Fuel Consumption第64页
    5.2 Selection of Water Jet Unit第64-67页
        5.2.1 Why MJP Water Jet?第64-67页
    5.3 Air Cushion System Design第67-70页
        5.3.1 Introduction第67页
        5.3.2 Cushion Pressure第67-68页
        5.3.3 Air Flow Rate第68-69页
        5.3.4 Lift Power第69页
        5.3.5 Selection of Fan Type第69页
        5.3.6 Lift Engines第69-70页
    5.4 Chapter Summary第70-71页
CHAPTER 6. HULL STRUCTURAL DESIGN第71-99页
    6.1 Material Selection第71-72页
        6.1.1 Why Built PACSCAT with Aluminium?第71页
        6.1.2 Yield Strength第71-72页
        6.1.3 Specific Aluminium Alloy Selection第72页
            6.1.3.1 5 086 Aluminium Alloy第72页
    6.2 Class Notations of PACSCAT第72-73页
    6.3 Motion Response第73-75页
        6.3.1 Relative vertical motion第73-74页
        6.3.2 Vertical acceleration第74-75页
    6.4 Loads on Shell Envelope第75-78页
        6.4.1 Hydrostatic Pressure on the shell plating第75-76页
        6.4.2 Hydrodynamic wave pressure第76页
        6.4.3 Weather Deck Pressure第76-77页
        6.4.4 Pressure on Interior Decks第77页
        6.4.5 Combined pressure distribution第77-78页
    6.5 Impact Loads第78-79页
        6.5.1 Bottom shell impact pressure due to slamming第78页
        6.5.2 Side shell impact pressure due to slamming第78页
        6.5.3 Forebody impact pressure第78-79页
        6.5.4 Conclusion第79页
    6.6 Local Design Criteria for Non-Displacement Mode第79-80页
    6.7 Hull envelope design criteria(Hull structures)第80-81页
        6.7.1 Bottom Shell第80-81页
        6.7.2 Outboard side shell第81页
        6.7.3 Inboard side shell第81页
        6.7.4 Wet Deck第81页
    6.8 Components第81-82页
        6.8.1 Weather Deck第81页
        6.8.2 Coachroof Deck第81-82页
        6.8.3 Interior Deck第82页
        6.8.4 Inner Bottom第82页
        6.8.5 Watertight and Deep Tank Bulkheads第82页
    6.9 Additional Effective Pressures第82-83页
        6.9.1 Bottom longitudinal amidships additional effective pressure第82页
        6.9.2 Bottom plating amidships additional effective pressure第82-83页
    6.10 Global Load and Design Criteria第83-84页
        6.10.1 Vertical wave bending moments and associated shear forces第83页
        6.10.2 Wave Shear Force第83-84页
        6.10.3 Dynamic Bending Moments第84页
        6.10.4 Dynamic Shear Force第84页
    6.11 Global Load and Design Criteria第84-85页
        6.11.1 Transverse Bending Moment第84-85页
        6.11.2 Twin Hull Torsional Moment第85页
        6.11.3 Vertical Shear Force第85页
    6.12 Design criteria and load combinations第85-86页
        6.12.1 Rule bending moment第85-86页
        6.12.2 Rule Shear Forces第86页
    6.13 Scantling Determination for Multi-Hull Craft第86-95页
        6.13.1 Minimum Plating Thickness Requirements第86-87页
        6.13.2 Shell Envelope Plating第87-88页
            6.13.2.1 Keel Plates第87页
            6.13.2.2 General Plating第87-88页
        6.13.3 Single Bottom Structure and Appendages第88-91页
            6.13.3.1 Keel第88页
            6.13.3.2 Centre girder第88-89页
            6.13.3.3 Side girders第89页
            6.13.3.4 Floors General第89-90页
            6.13.3.5 Floors in machinery spaces第90页
            6.13.3.6 Forefoot and stem第90-91页
        6.13.4 Shell envelope framing(Stiffening General)第91-93页
        6.13.5 Stiffener Profiling第93-94页
        6.13.6 Watertight Bulkheads and Deep Tank Plating第94-95页
        6.13.7 Deck structures第95页
    6.14 Hull Girder Strength第95-99页
        6.14.1 Hull Longitudinal Bending Strength第96-97页
        6.14.2 Hull Shear Strength第97页
        6.14.3 Strength of cross-deck structures第97-98页
        6.14.4 Conclusion第98-99页
CHAPTER 7. DIRECT CALCULATIONS第99-116页
    7.1 Finite Element Analysis第99-116页
        7.1.1 Model Development Approach第99-100页
            7.1.1.1 Non-Parametric Model Generation第99-100页
            7.1.1.2 Parametric Model generation第100页
            7.1.1.3 Current Model Generation Approach-GUI Approach第100页
        7.1.2 3D Global Finite Element Model Development第100-102页
        7.1.3 Boundary Conditions第102-103页
            .7.1.3.1 Spring Constraints Evaluation第102-103页
        7.1.4 Extent of FEM Modeling第103-104页
        7.1.5 Analysis Phase (Load Cases Applications)第104-107页
            7.1.5.1 Moment Application (Load Case 1)第104-105页
            7.1.5.2Sea Pressure Application @ T= 0.8m (Load Case 2)第105页
            7.1.5.3Sea Pressure Application @ T= 1.5m (Load Case 3)第105-106页
            7.1.5.4 Only Battle Tank (Load Case 4)第106-107页
            7.1.5.5Moments and Tank (Load Case 5)第107页
            7.1.5.6Full Load Condition (Load Case 6)第107页
        7.1.6 Analysis and Results第107-114页
            7.1.6.1 Hogging Moment Condition (Load Case 1)第108-109页
            7.1.6.2 Sagging Moment Condition (Load Case 1)第109-110页
            7.1.6.3 Torsional Moment Application (Load Case 1)第110-111页
            7.1.6.4Sea Pressure Application @ T=0.8m (Load Case 2)第111页
            7.1.6.5Sea Pressure Application @ T=1.5m (Load Case 3)第111-112页
            7.1.6.6 Only Battle Tank Loading (Load Case 4)第112-113页
            7.1.6.7Moment and Tank Combine Loading (Load Case 5)第113页
            7.1.6.8Full Load Condition (Load Case 6)第113-114页
        7.1.7 Theoretical Validation第114-116页
            7.1.7.1 Comparison第114-115页
            7.1.7.2 Conclusion第115-116页
CONCLUDING REMARKS AND FUTURE RECOMMENDATIONS第116页
Concluding Remarks第116页
Recommendations for Future Work第116-118页
REFERENCES第118-119页

论文共119页,点击 下载论文
上一篇:教育公平视角下县域城乡义务教育均衡发展研究--以福建省光泽县为例
下一篇:H加油站成品油库存管理研究