摘要 | 第1-4页 |
ABSTRACT | 第4-8页 |
第1章 绪论 | 第8-13页 |
·课题研究背景 | 第8页 |
·非均质材料力学性质的研究现状 | 第8-11页 |
·ANSYS程序在工程计算和理论解的数值验证中的应用 | 第11-12页 |
·本文研究的主要内容 | 第12-13页 |
第2章 准备知识 | 第13-19页 |
·Eshelby张量的积分表达式 | 第13-14页 |
·Eshelby等效变换理论 | 第14-15页 |
·夹杂形状函数及其性质 | 第15-17页 |
·非均质材料有效弹性张量 | 第17-19页 |
第3章 任意弱非圆夹杂的Eshelby张量及其数值验证 | 第19-36页 |
·引言 | 第19页 |
·任意弱非圆夹杂Eshelby张量的解 | 第19-24页 |
·问题描述 | 第19页 |
·基本方程 | 第19-21页 |
·夹杂Ω~+内的Eshelby张量 | 第21-23页 |
·夹杂Ω~+外的Eshelby张量 | 第23-24页 |
·任意弱非圆夹杂Eshelby张量的有限元数值验证 | 第24-35页 |
·利用ANSYS热-结构耦合功能在夹杂内产生本征应变 | 第24-25页 |
·热-结构耦合等参元分析 | 第25-26页 |
·有限元模型的建立与求解 | 第26-27页 |
·夹杂内外应力应变的理论解 | 第27-30页 |
·数值分析结果 | 第30-35页 |
·小结 | 第35-36页 |
第4章 任意弱非圆夹杂内的平均Eshelby张量 | 第36-53页 |
·引言 | 第36页 |
·含任意弱非圆夹杂平面的应力分析 | 第36-42页 |
·在夹杂Ω~+内的应力 | 第36-39页 |
·在基体Ω~-中的应力 | 第39-41页 |
·任意弱非圆孔洞外的应力 | 第41-42页 |
·含弱非圆夹杂平面的有限元分析 | 第42-52页 |
·弱非圆夹杂内的应力分析 | 第42-49页 |
·含弱非圆孔洞无限大平面的应力场 | 第49-52页 |
·小结 | 第52-53页 |
第5章 非均质材料宏观本构关系的研究 | 第53-62页 |
·引言 | 第53-54页 |
·非均质材料有效刚度张量的表达式 | 第54-58页 |
·有限元模拟及结果分析 | 第58-60页 |
·小结 | 第60-62页 |
第6章 结论与展望 | 第62-63页 |
致谢 | 第63-64页 |
参考文献 | 第64-68页 |
附录A S_(ijkl)(S_m,x)张量的求解 | 第68-71页 |
附录B 2种夹杂平均应力的数值结果 | 第71-74页 |
附录C Voigt约定 | 第74-75页 |
攻读学位期间的研究成果 | 第75页 |