ABSTRACT | 第8-9页 |
摘要 | 第10-13页 |
1 INTRODUCTION | 第13-28页 |
1.1 RICE PRODUCTION AREA AND CONSUMPTION AROUND GLOBE AND CHINA | 第13页 |
1.2 WATER AVAILABILITY AND DEMAND | 第13-16页 |
1.3 LEAF DEVELOPMENT | 第16-19页 |
1.4 WATER RELATIONS AND HYDRAULIC CONDUCTIVITY | 第19-24页 |
1.5 LEAF PHOTOSYNTHESIS | 第24-28页 |
2 RICE (ORYZA SATIVA L.) LEAF VEIN DENSITY: A REGULATOR OF PHOTOSYNTHESIS DECREASE UNDER PEG SIMULATED DROUGHTSTRESS | 第28-43页 |
2.1 ABSTRACT | 第28页 |
2.2 INTRODUCTION | 第28-30页 |
2.3 MATERIAL AND METHODS | 第30-33页 |
2.3.1 Plant materials | 第30-31页 |
2.3.2 Gas exchange measurements | 第31页 |
2.3.3 Leaf water potential (Ψleaf) | 第31页 |
2.3.4 Plant hydraulic conductivity determination | 第31-32页 |
2.3.5 Specific leaf weight determination (SLW) | 第32页 |
2.3.6 Nitrogen and SPAD index measurement | 第32页 |
2.3.7 Leaf vein density measurement | 第32页 |
2.3.8 Statistical analysis | 第32-33页 |
2.4 RESULTS | 第33-39页 |
2.5 DISCUSSION | 第39-42页 |
2.5.1 Relationship between A and Kplant | 第39-41页 |
2.5.2 Relationship between Kplant and LVD | 第41-42页 |
2.6 CONCLUSION | 第42-43页 |
3 RICE (ORYZA SATIVA L.) HYDRAULIC CONDUCTIVITY LINKS TO LEAF VENATION ARCHITECTURE UNDER WELL-WATERED CONDITIONRATHER THAN PEG-INDUCED WATER DEFICIT | 第43-56页 |
3.1 ABSTRACT | 第43页 |
3.2 INTRODUCTION | 第43-44页 |
3.3 MATERIALS AND METHODS | 第44-46页 |
3.3.1 Plant materials | 第44页 |
3.3.2 Measurement of leaf venation architecture | 第44页 |
3.3.3 Measurement of plant and leaf hydraulic conductivities | 第44-45页 |
3.3.4 Measurement of xylem sap flow rate and water uptake rate | 第45页 |
3.3.5 Statistical analysis | 第45-46页 |
3.4 RESULTS | 第46-51页 |
3.5 DISCUSSION | 第51-55页 |
3.5.1 Variation in leaf venation architecture among varieties and water supplies | 第51-53页 |
3.5.2 Correlations between leaf venation architecture, Kleaf and Kplant | 第53-55页 |
3.6 CONCLUSION | 第55-56页 |
4 DIFFUSIVE AS WELL AS METABOLIC IMPAIRMENT AND PLANT HYDRAULIC CONDUCTIVITY DETERMINE PHOTOSYNTHESIS DECREASEIN RICE (ORYZA SATIVA L.) UNDER PEG-SIMULATED DROUGHT STRESS | 第56-72页 |
4.1 ABSTRACT | 第56页 |
4.2 INTRODUCTION | 第56-58页 |
4.3 MATERIAL AND METHODS | 第58-61页 |
4.3.1 Plant materials | 第58页 |
4.3.2 Gas exchange measurements | 第58-60页 |
4.3.3 Measurement of transpiration rate at different time intervals | 第60页 |
4.3.4 Measurement of plant and leaf hydraulic conductivities | 第60页 |
4.3.5 Measurement of xylem sap flow rate | 第60页 |
4.3.6 Statistical analysis | 第60-61页 |
4.4 RESULTS | 第61-67页 |
4.5 DISCUSSION | 第67-71页 |
4.5.1 Contribution of gs, gm and metabolic impairment in A reduction | 第67-69页 |
4.5.2 Relationship within/between hydraulic conductivity and A | 第69-71页 |
4.6 CONCLUSION | 第71-72页 |
5 LEAF VEIN DENSITY VERSUS LEAF VEIN THICKNESS:HOW DETERMINES THE RICE (ORYZA SATIVA L.) PLANT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHESIS UNDER PEG-SIMULATED WATERDEFICIT STRESS | 第72-85页 |
5.1 ABSTRACT | 第72页 |
5.2 INTRODUCTION | 第72-73页 |
5.3 MATERIAL AND METHODS | 第73-74页 |
5.3.1 Plant materials | 第73页 |
5.3.2 Gas exchange measurements | 第73页 |
5.3.3 Leaf vein density measurement | 第73页 |
5.3.4 Measurement of plant conductivity | 第73页 |
5.3.5 Leaf vein thickness measurement | 第73-74页 |
5.3.6 Statistical analysis | 第74页 |
5.4 RESULTS | 第74-82页 |
5.5 DISCUSSION | 第82-84页 |
5.5.1 Relationship between leaf vein density and photosynthesis | 第82-83页 |
5.5.2 Relationship between leaf vein density and Kplant | 第83页 |
5.5.3 Relationship between leaf vein thickness, photosynthesis and Kplant | 第83-84页 |
5.6 CONCLUSION | 第84-85页 |
REFERENCES | 第85-108页 |
PUBLICATIONS | 第108-109页 |
ACKNOWLEDGEMENTS | 第109-110页 |