首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

几类无穷维哈密顿系统的保结构算法研究

摘要第7-8页
Abstract第8-9页
Introduction第10-15页
Chapter 1 Preliminaries第15-27页
    1.1 Lagrangian equations and Hamiltonian equations第15-16页
    1.2 Symplectic integrator第16-19页
        1.2.1 Symplectic Runge-Kutta method第17-18页
        1.2.2 Variational integrator第18-19页
    1.3 Multisymplectic integrator第19-27页
        1.3.1 Multisymplectic Hamiltonian PDEs第19-21页
        1.3.2 Multisymplectic Runge-Kutta method第21-22页
        1.3.3 Multisymplectic variational integrator第22-24页
        1.3.4 Multisymplectic pseudospectral method第24-27页
Chapter 2 Symplecticity and multisymplecticity of the Crank-Nicolson scheme for the nonlinear Schrodinger equation第27-49页
    2.1 Multisymplectic structure of the NLS equation第27-29页
    2.2 Multisymplecticity of the Crank-Nicolson scheme第29-36页
        2.2.1 Reconstruction by the concatenating method第29-33页
        2.2.2 An equivalent variational integrator第33-36页
    2.3 Symplecticity of the Crank-Nicolson scheme第36-37页
    2.4 Square conservation and convergence analysis第37-43页
        2.4.1 Square conservation第39-40页
        2.4.2 Convergence analysis第40-43页
    2.5 Numerical experiments第43-48页
        2.5.1 One soliton第44-47页
        2.5.2 Two solitons第47-48页
    2.6 Concluding remarks第48-49页
Chapter 3 Numerical dispersion analysis of a multisymplectic scheme for the three dimensional Maxwell's equations第49-88页
    3.1 Multisymplectic formulation of Maxwell's equations第50-53页
    3.2 Multisymplectic Euler-box scheme for the three dimensional Maswell's equations第53-61页
    3.3 Discrete energy conservation law and divergence preservation第61-68页
        3.3.1 Discrete energy conservation law第61-65页
        3.3.2 Divergence-free preservation第65-68页
    3.4 Dispersion and non-dissipation property第68-74页
        3.4.1 Dispersion relation of the multisymplectic scheme第68-72页
        3.4.2 Comparison with Yee's method第72-73页
        3.4.3 Non-dissipation property第73-74页
    3.5 Some analyses on the numerical dispersion relation第74-86页
    3.6 Concluding remarks第86-88页
Chapter 4 Geometric numerical integrators for the Degasperis-Procesi e-quation第88-112页
    4.1 Symplectic Fourier pseudospectral integrator for the DP equation第89-92页
    4.2 Operator splitting method for the DP equation第92-96页
    4.3 Numerical experiments第96-110页
    4.4 Concluding remarks第110-112页
Bibliography第112-119页
Publications and Finished Papers第119-120页
Acknowledgements第120页

论文共120页,点击 下载论文
上一篇:Hom-n-李超代数的表示与广义限制李代数的结构
下一篇:含非平稳干扰的模型辨识及其在模型预测控制中的应用