首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文--偏微分方程论文--椭圆型方程论文

奇摄动椭圆型方程解的集中现象

摘要第1-8页
Abstract第8-12页
第一章 绪论第12-19页
   ·背景介绍第12-16页
   ·本文的主要内容第16-19页
第二章 带奇异源Liouville型方程解的集中现象第19-43页
   ·背景介绍第19-22页
   ·近似解的构造第22-26页
   ·算子L的逆第26-38页
   ·非线性问题第38页
   ·变分约化第38-40页
   ·能量展开第40-41页
   ·主要定理的证明第41-43页
第三章 带奇异源各向异性Emden-Fowler方程解的集中现象第43-77页
   ·问题介绍第43-45页
   ·等价命题第45-49页
   ·近似解的构造第49-53页
   ·线性化方程的可解性第53-70页
   ·非线性问题第70-71页
   ·定理3.1.2证明简要第71-72页
   ·变分约化第72页
   ·能量展开第72-75页
   ·定理3.1.1的证明第75-77页
第四章 非自治奇摄动Neumann问题解的内部集中现象第77-104页
   ·背景介绍第77-80页
   ·近似解的构造第80-82页
   ·准备工作第82-89页
   ·线性问题第89-93页
   ·非线性问题第93-97页
   ·能量展开第97-98页
   ·最大化过程第98-100页
   ·定理4.1.1的证明第100-102页
   ·有用的注解第102-104页
第五章 几个相关的问题第104-106页
   ·集中现象与参数的关系第104-105页
   ·α对带奇异源Liouville型问题的影响第105页
   ·一般散度型的奇摄动问题第105-106页
参考文献第106-114页
致谢第114-116页
博士期间完成的论文第116页

论文共116页,点击 下载论文
上一篇:Procrustes问题的迭代解法和两个矩阵扰动问题
下一篇:积分方程求解及一类机械化算法研究