Abstract | 第5-6页 |
摘要 | 第7-20页 |
1 Introduction | 第20-36页 |
1.1 Motivation of the study | 第20-22页 |
1.1.1 Flow a cross bank of tubes | 第20-21页 |
1.1.2 Heat transfer enhancement techniques | 第21-22页 |
1.2 Background to the study | 第22-33页 |
1.2.1 Plate finned tube heat exchanger | 第22-28页 |
1.2.2 Fluid flow and heat transfer modeling for current plate finned tube heat exchanger | 第28-33页 |
1.3 Study objectives | 第33页 |
1.4 Layout of thesis | 第33-36页 |
2 Review on FSP as convective heat transfer mechanism | 第36-51页 |
2.1 Synergy based momentum and energy equations | 第36-39页 |
2.2 Synergy based on the conservation equation for mechanical energy | 第39-40页 |
2.3 Examples of convection with different field synergy techniques | 第40-45页 |
2.3.1 Two parallel porous plates | 第40-41页 |
2.3.2 Single finned tube | 第41-42页 |
2.3.3 Micro channels with different ribs | 第42-43页 |
2.3.4 Circular tube fitted with helical screw-tape inserts | 第43-44页 |
2.3.5 Effects of the fouling in round tube | 第44-45页 |
2.4 Optimization method of convective heat transfer using extremum entransy dissipation EED | 第45-47页 |
2.5 Computational fluid dynamics CFD | 第47-50页 |
2.5.1 Preprocessing and solver | 第47-48页 |
2.5.2 Governing equations of thermo-fluid field | 第48页 |
2.5.3 Turbulence models | 第48-49页 |
2.5.4 Numerical methods | 第49-50页 |
2.6 Closure | 第50-51页 |
3 Numerical investigations of convective heat-flow over round and elliptic tube bundle basedon field synergy principle | 第51-74页 |
3.1 Physical model | 第51-54页 |
3.2 Boundary conditions and CFD simulation | 第54-56页 |
3.3 Mesh verification | 第56-57页 |
3.4 Effect of fluid flow and heat transfer | 第57-61页 |
3.5 Tube row number effect | 第61-62页 |
3.6 Tube pitch effect | 第62-64页 |
3.7 Analysis of temperature difference | 第64-65页 |
3.8 Analysis of pressure drop | 第65-67页 |
3.9 Analysis of heat transfer enhancement and effectiveness | 第67-70页 |
3.10 Concept of field synergy factor | 第70-73页 |
3.11 Closure | 第73-74页 |
4 Experimental study of field synergy principle on a heated plate | 第74-88页 |
4.1 Variation of the total heat transfer rate | 第74页 |
4.2 Visualization fluid flow and temperature distributions | 第74页 |
4.3 Experiment set-up | 第74-76页 |
4.4 Measurement system | 第76-78页 |
4.5 Uncertainty of the experiment and accuracy | 第78-79页 |
4.6 Velocity field | 第79-81页 |
4.7 Temperature field | 第81-83页 |
4.8 Effect of operating and configuration of parameters | 第83-84页 |
4.9 Synergy number | 第84-87页 |
4.10 Closure | 第87-88页 |
5 Field synergy equations based on the approaches of minimum heat consumption in heatconvection | 第88-118页 |
5.1 Laminar field synergy equation based Euler's equation and EED | 第88-92页 |
5.2 Field synergy equation for turbulent convection | 第92-97页 |
5.3 Water-flow heated by symmetrical rows of tube using RNG k-ε model | 第97-98页 |
5.4 Fully developed turbulent flow in elliptical tube bundle by RNG k-ε model | 第98-100页 |
5.5 Water now through a heated tube bundle with uniform heat flux condition | 第100-102页 |
5.6 Predictive optimization method based on the minimum heat transfer entropy generation MEG | 第102-107页 |
5.6.1 Basic assumptions | 第102页 |
5.6.2 Basic equations | 第102-103页 |
5.6.3 Integal constraint and objective functional | 第103页 |
5.6.4 Solution of the variational problem | 第103-107页 |
5.7 Derivation of optimization equations for external pump work consumption EPWC | 第107-111页 |
5.7.1 Heat transfer enhancement | 第107-108页 |
5.7.2 Optimization equations | 第108-111页 |
5.8 Optimization of the heat transfer process using application of exergy destruction minimization EDM | 第111-116页 |
5.9 Closure | 第116-118页 |
6 Numerical solutions of analytical convective synergy field and novel designs | 第118-138页 |
6.1 Numerical solution method for analytical convective synergy field | 第119-120页 |
6.2 Synergy solution with heat source(Ⅰ)using method of separating all variables with addition | 第120-122页 |
6.2.1 Full synergy field | 第120页 |
6.2.2 Non-synergy field | 第120-122页 |
6.3 Synergy solutions with heat source(Ⅱ)concise solution family using method of separating variables with addition | 第122-126页 |
6.3.1 Solution with linear temperature distribution | 第122-124页 |
6.3.2 Solution with-out heat sources | 第124-126页 |
6.4 Synergy solution with heat source(Ⅲ)using hybrid method of separating variables | 第126-127页 |
6.5 Novel designs of plate finned tube heat exchanger | 第127-129页 |
6.6 Grid independence for novel designs | 第129-130页 |
6.7 Evaluation of novel enhanced heat transfer in plate finned tube heat exchanger | 第130-133页 |
6.8 Performance evaluation criteria PEC | 第133-137页 |
6.9 Closure | 第137-138页 |
7 Conclusion | 第138-142页 |
7.1 Principal conclusions | 第138-140页 |
7.2 Innovation points | 第140-141页 |
7.3 Future work | 第141-142页 |
References | 第142-149页 |
Achievements as a PhD student | 第149-150页 |
Acknowledgement | 第150-151页 |
About the Author | 第151-153页 |