首页--工业技术论文--能源与动力工程论文--热力工程、热机论文--工业用热工设备论文--换热设备论文

场协同分析外部流动及板翅管换热器周期性热流体优化

Abstract第5-6页
摘要第7-20页
1 Introduction第20-36页
    1.1 Motivation of the study第20-22页
        1.1.1 Flow a cross bank of tubes第20-21页
        1.1.2 Heat transfer enhancement techniques第21-22页
    1.2 Background to the study第22-33页
        1.2.1 Plate finned tube heat exchanger第22-28页
        1.2.2 Fluid flow and heat transfer modeling for current plate finned tube heat exchanger第28-33页
    1.3 Study objectives第33页
    1.4 Layout of thesis第33-36页
2 Review on FSP as convective heat transfer mechanism第36-51页
    2.1 Synergy based momentum and energy equations第36-39页
    2.2 Synergy based on the conservation equation for mechanical energy第39-40页
    2.3 Examples of convection with different field synergy techniques第40-45页
        2.3.1 Two parallel porous plates第40-41页
        2.3.2 Single finned tube第41-42页
        2.3.3 Micro channels with different ribs第42-43页
        2.3.4 Circular tube fitted with helical screw-tape inserts第43-44页
        2.3.5 Effects of the fouling in round tube第44-45页
    2.4 Optimization method of convective heat transfer using extremum entransy dissipation EED第45-47页
    2.5 Computational fluid dynamics CFD第47-50页
        2.5.1 Preprocessing and solver第47-48页
        2.5.2 Governing equations of thermo-fluid field第48页
        2.5.3 Turbulence models第48-49页
        2.5.4 Numerical methods第49-50页
    2.6 Closure第50-51页
3 Numerical investigations of convective heat-flow over round and elliptic tube bundle basedon field synergy principle第51-74页
    3.1 Physical model第51-54页
    3.2 Boundary conditions and CFD simulation第54-56页
    3.3 Mesh verification第56-57页
    3.4 Effect of fluid flow and heat transfer第57-61页
    3.5 Tube row number effect第61-62页
    3.6 Tube pitch effect第62-64页
    3.7 Analysis of temperature difference第64-65页
    3.8 Analysis of pressure drop第65-67页
    3.9 Analysis of heat transfer enhancement and effectiveness第67-70页
    3.10 Concept of field synergy factor第70-73页
    3.11 Closure第73-74页
4 Experimental study of field synergy principle on a heated plate第74-88页
    4.1 Variation of the total heat transfer rate第74页
    4.2 Visualization fluid flow and temperature distributions第74页
    4.3 Experiment set-up第74-76页
    4.4 Measurement system第76-78页
    4.5 Uncertainty of the experiment and accuracy第78-79页
    4.6 Velocity field第79-81页
    4.7 Temperature field第81-83页
    4.8 Effect of operating and configuration of parameters第83-84页
    4.9 Synergy number第84-87页
    4.10 Closure第87-88页
5 Field synergy equations based on the approaches of minimum heat consumption in heatconvection第88-118页
    5.1 Laminar field synergy equation based Euler's equation and EED第88-92页
    5.2 Field synergy equation for turbulent convection第92-97页
    5.3 Water-flow heated by symmetrical rows of tube using RNG k-ε model第97-98页
    5.4 Fully developed turbulent flow in elliptical tube bundle by RNG k-ε model第98-100页
    5.5 Water now through a heated tube bundle with uniform heat flux condition第100-102页
    5.6 Predictive optimization method based on the minimum heat transfer entropy generation MEG第102-107页
        5.6.1 Basic assumptions第102页
        5.6.2 Basic equations第102-103页
        5.6.3 Integal constraint and objective functional第103页
        5.6.4 Solution of the variational problem第103-107页
    5.7 Derivation of optimization equations for external pump work consumption EPWC第107-111页
        5.7.1 Heat transfer enhancement第107-108页
        5.7.2 Optimization equations第108-111页
    5.8 Optimization of the heat transfer process using application of exergy destruction minimization EDM第111-116页
    5.9 Closure第116-118页
6 Numerical solutions of analytical convective synergy field and novel designs第118-138页
    6.1 Numerical solution method for analytical convective synergy field第119-120页
    6.2 Synergy solution with heat source(Ⅰ)using method of separating all variables with addition第120-122页
        6.2.1 Full synergy field第120页
        6.2.2 Non-synergy field第120-122页
    6.3 Synergy solutions with heat source(Ⅱ)concise solution family using method of separating variables with addition第122-126页
        6.3.1 Solution with linear temperature distribution第122-124页
        6.3.2 Solution with-out heat sources第124-126页
    6.4 Synergy solution with heat source(Ⅲ)using hybrid method of separating variables第126-127页
    6.5 Novel designs of plate finned tube heat exchanger第127-129页
    6.6 Grid independence for novel designs第129-130页
    6.7 Evaluation of novel enhanced heat transfer in plate finned tube heat exchanger第130-133页
    6.8 Performance evaluation criteria PEC第133-137页
    6.9 Closure第137-138页
7 Conclusion第138-142页
    7.1 Principal conclusions第138-140页
    7.2 Innovation points第140-141页
    7.3 Future work第141-142页
References第142-149页
Achievements as a PhD student第149-150页
Acknowledgement第150-151页
About the Author第151-153页

论文共153页,点击 下载论文
上一篇:基于切换的网络化预测及事件驱动控制的研究
下一篇:基于复杂网络的气液两相流流型分析方法研究