首页--工业技术论文--自动化技术、计算机技术论文--自动化技术及设备论文--自动化元件、部件论文--发送器(变换器)、传感器论文--传感器的应用论文

面向最优信息质量的无线传感器网络资源分配

ABSTRACT第5-7页
摘要第8-14页
List of Abbreviations第14-18页
CHAPTER 1 INTRODUCTION第18-32页
    1.1 Background and Motivation第18-20页
    1.2 Challenges of High-quality Information Acquisition in WSNs第20-22页
    1.3 Limitations of Current Research Results第22-28页
        1.3.1 Energy-Aware Qo I Maximization for WSNs第22-24页
        1.3.2 Distortion Minimization in WSNs with Energy Harvesting第24-26页
        1.3.3 Qo I Maximization in Lifetime-Constrained WSNs第26-28页
    1.4 Organization and Contributions of the Dissertation第28-32页
        1.4.1 Organization of the Dissertation第29-30页
        1.4.2 Contributions of the Dissertation第30-32页
CHAPTER 2 ENERGY-AWARE QOI MAXIMIZATION FOR WSNS第32-50页
    2.1 System Model第32-35页
        2.1.1 Network Scenario第32-34页
        2.1.2 Information Quality Model第34页
        2.1.3 Energy Consumption Model第34-35页
    2.2 Problem Formulation and Equivalent Transformation第35-37页
        2.2.1 Problem Formulation第35-36页
        2.2.2 Equivalent Transformation第36-37页
    2.3 Lyapunov Optimization and Dynamic Algorithm第37-42页
        2.3.1 Two Virtual Queues第37-38页
        2.3.2 Lyapunov Optimization第38-39页
        2.3.3 Dynamic Algorithm第39-42页
    2.4 Performance Analysis第42-43页
    2.5 Simulation Results第43-48页
    2.6 Summary第48-50页
CHAPTER 3 DISTORTION MINIMIZATION IN WSNS WITH ENERGY HAR-VESTING第50-72页
    3.1 System Model第50-53页
        3.1.1 Network Model第50-51页
        3.1.2 SN Measurements and Distortion Measure at the FC第51-52页
        3.1.3 Energy Supply Model第52-53页
    3.2 Finite-Time Horizon Energy Allocation with Non-Causal Information andInfinite-Sized Battery第53-57页
        3.2.1 Problem Formulation第53页
        3.2.2 Problem Transformation第53-54页
        3.2.3 Optimal Sleep-wake Scheduling and Power Control Algorithm第54-57页
    3.3 Infinite-Time Horizon Energy Allocation with Causal Information and Finite-Sized Battery第57-63页
        3.3.1 Problem Formulation第58-59页
        3.3.2 Suboptimal Online Sleep-wake Scheduling and Power Control Al-gorithm第59-62页
        3.3.3 Performance Analysis第62-63页
    3.4 Simulation Results第63-69页
        3.4.1 Finite Horizon Problem with Unlimited Battery Capacity第64-66页
        3.4.2 Infinite Horizon Problem with Limited Battery Capacity第66-68页
        3.4.3 Performance Comparison of Two Proposed Algorithms第68-69页
    3.5 Summary第69-72页
CHAPTER 4 QOI MAXIMIZATION IN LIFETIME-CONSTRAINED WSNS第72-88页
    4.1 System Model第72-75页
        4.1.1 Network Model第72-73页
        4.1.2 Data Transmission Model第73-74页
        4.1.3 Sensor Node Lifetime Model第74-75页
    4.2 Problem Formulation and Equivalent Transformation第75-77页
        4.2.1 Problem Formulation第75-76页
        4.2.2 Equivalent Transformation第76-77页
    4.3 Rate Adaptation and Power Allocation Algorithms第77-83页
        4.3.1 Proximal Approximation Based Resource Allocation Algorithm第77-78页
        4.3.2 Successive Convex Approximation Based Algorithm第78-83页
    4.4 Simulation Results第83-85页
    4.5 Summary第85-88页
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS第88-92页
    5.1 Summary of Accomplished Work第88-89页
    5.2 Future Works第89-92页
APPENDIX PROOF OF THEOREMS第92-100页
    A.1 Energy-Aware Qo I Maximization for WSNs第92-96页
        A.1.1 Proof of Lemma 2.1第92-93页
        A.1.2 Proof of Lemma 2.2第93-94页
        A.1.3 Proof of Theorem 2.1第94页
        A.1.4 Proof of Theorem 2.2第94-96页
    A.2 Distortion Minimization in WSNs with Energy Harvesting第96-98页
        A.2.1 Proof of Theorem 3.1第96页
        A.2.2 Proof of Theorem 3.2第96-97页
        A.2.3 Proof of Lemma 3.1第97页
        A.2.4 Proof of Theorem 3.3第97-98页
    A.3 Qo I Maximization in Lifetime-Constrained WSNs第98-100页
        A.3.1 Proof of Theorem 4.1第98-100页
REFERENCES第100-114页
ACKNOWLEDGEMENTS第114-116页
RESUME第116-118页

论文共118页,点击 下载论文
上一篇:基于成像传感器的可见光定位理论与技术研究
下一篇:试论杜尚从传统艺术到观念艺术