首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

时间序列分析技术的研究

ABSTRACT第5-7页
摘要第8-15页
TABLE OF CONTENTS第15-18页
LIST OF FIGURES第18-20页
LIST OF TABLES第20-21页
LIST OF ACRONYMS第21-22页
CHAPTER 1: INTRODUCTION第22-37页
    1.1 Motivation第22-24页
    1.2 Overview第24-34页
        1.2.1 Time series representation and dimensionality reduction第25-27页
        1.2.2 The indexing structure第27-28页
        1.2.3 The similarity measure第28-30页
        1.2.4 Time series segmentation第30-32页
        1.2.5 The other mining issues第32-34页
    1.3 Objective and methodology of the research第34页
    1.4 The thesis organization第34-37页
CHAPTER 2: THE FUNDAMENTAL OF TIME SERIES ANALYSIS第37-62页
    2.1 Introduction第37-39页
    2.2 Data warehouse第39-42页
        2.2.1 Data warehouse system architecture第40-41页
        2.2.2 Data warehouse and business intelligence第41-42页
    2.3 Mining with time series data第42-48页
        2.3.1 Clustering analysis with K-Means algorithm第42-44页
        2.3.2 Time series classification analysis第44-46页
        2.3.3 Rule discovery with time series data and its application第46-48页
    2.4 Time series predictive analysis第48-57页
        2.4.1 Predictive analysis issue第48-49页
        2.4.2 The performance evaluation for prediction第49-50页
        2.4.3 Prediction algorithms第50-57页
            2.4.3.1 Support vector machines第50-52页
            2.4.3.2 Sequential minimal optimization第52-55页
            2.4.3.3 Linear Regression第55-57页
    2.5 The proposed framework for time series analysis第57-60页
    2.6 Summarization第60-62页
CHAPTER 3: DATA PREPARATION AND TRANSFORMATION第62-77页
    3.1 Introduction第62-64页
    3.2 Problem statement and definitions第64-66页
    3.3 The dimensionality reduction approach第66-69页
    3.4 Experimental evaluation第69-76页
        3.4.1 Experimental environment and dataset第69-70页
        3.4.2 Experimental results and analysis第70-76页
            3.4.2.1 Data preprocessing第70-72页
            3.4.2.2 Predictive analysis第72-73页
            3.4.2.3 Performance comparison第73-76页
    3.5 Summarization第76-77页
CHAPTER 4: TIME SERIES TREND ANALYSIS第77-87页
    4.1 Introduction第77-79页
    4.2 The trend analysis approach第79-83页
    4.3 Experimental evaluation第83-86页
        4.3.1 Experimental environment and dataset第83-84页
        4.3.2 Experimental results and analysis第84-86页
    4.4 Summarization第86-87页
CHAPTER 5: TIME SERIES PREDICTIVE ANALYSIS第87-100页
    5.1 Introduction第87-90页
    5.2 Definitions and predictive techniques第90-93页
        5.2.1 Linear regression for prediction第91页
        5.2.2 Applying SMO algorithm for prediction第91-93页
    5.3 Experimental evaluation第93-99页
        5.3.1 Experimental environment and dataset第93页
        5.3.2 Experimental results and analysis第93-99页
    5.4 Summarization第99-100页
CHAPTER 6: BUSINESS INTELLIGENCE WITH TIME SERIES第100-112页
    6.1 Introduction第100-102页
    6.2 Storage architecture and definitions第102-105页
    6.3 The approach第105-107页
        6.3.1 Business intelligence第105页
        6.3.2 Reducing points by matching samples第105-107页
    6.4 Experimental evaluation第107-111页
        6.4.1 Experimental environment and dataset第107页
        6.4.2 Experimental results and analysis第107-111页
    6.5 Summarization第111-112页
CONCLUSIONS第112-115页
    1 Summary and the contribution第112-113页
    2 Future works第113-115页
REFERENCES第115-125页
APPENDIX A: LIST OF PUBLICATIONS第125-126页
APPENDIX B: PROJECTS第126-127页
ACKNOWLEDGEMENT第127页

论文共127页,点击 下载论文
上一篇:表面活性剂增溶微生物—光催化联合降解污染土壤中的硫丹
下一篇:图像复原算法研究