首页--交通运输论文--公路运输论文--汽车工程论文--汽车结构部件论文--电气设备及附件论文

面向驾驶员疲劳车道偏离识别方法研究

摘要第4-6页
ABSTRACT第6-7页
CHAPTER 1: INTRODUCTION第11-29页
    1.1 The significance and context of research第11-13页
        1.1.1 The context of research第11-12页
        1.1.2 The significance of the research第12-13页
    1.2 Analyze related studies第13-23页
        1.2.1 Base on physiological features of driver to determine driver’s fatigue第13-16页
        1.2.2 Base on driver’s behavior第16-20页
        1.2.3 Base on vehicle state information第20-21页
        1.2.4 Based on information fusion technology第21-23页
    1.3 Assess the study situation at home and abroad第23-24页
    1.4 The content of study第24-29页
CHAPTER 2: TEST DESIGN AND DATA COLLECTION第29-47页
    2.1 The classification of lane departure and overview of driving fatigue第29-33页
        2.1.1 The classification of lane departure第29-30页
        2.1.2 Overview on fatigue driving第30-32页
        2.1.3 The relationship between driving behavior and fatigue driving第32-33页
    2.2 Test design第33-39页
        2.2.1 Test purposes第34页
        2.2.2 Test parameters第34页
        2.2.3 Test subjects第34-35页
        2.2.4 Test equipment第35-37页
        2.2.5 Test procedure第37-39页
    2.3 Confirmation of recognition time window of fatigue lane departure and sample selection第39-45页
        2.3.1 Determine start time of fatigue lane departure第39-41页
        2.3.2 Confirm recognition time window of fatigue lane departure第41-45页
    2.4 Chapter summary第45-47页
CHAPTER 3: DRIVING BEHAVIOR CHARACTERISTIC ANALYSIS OF FATIGUELANE DEPARTURE第47-65页
    3.1 Analyzing characteristics of driver’s operating behavior第47-57页
        3.1.1 Steering wheel angle第47-54页
        3.1.2 Steering wheel angle velocity (SWAV)第54-57页
    3.2 Analyze characteristics of vehicle’s motion state第57-63页
        3.2.1 Lateral acceleration (LA)第57-59页
        3.2.2 Yaw velocity (YV)第59-61页
        3.2.3. Lateral location of vehicle (LLV)第61-62页
        3.2.4 Average lateral velocity of vehicle (ALV)第62-63页
    3.3 Chapter summary第63-65页
CHAPTER 4: FATIGUE LANE DEPARTURE RECOGNITION BASED ON GM-HMM554.1 Pattern recognition (PR) overview第65-95页
    4.1 Pattern recognition (PR) overview第65-67页
    4.2 Hidden Markov Model Basic Idea第67-84页
        4.2.1 The basic structure of Hidden Markov Model第67-70页
        4.2.2 The three basic problems for HMMs第70-71页
        4.2.3 Solutions for the three basic problems of HMMs第71-84页
    4.3 Recognition model building of fatigue lane departure based on GM-HMM第84-91页
        4.3.1 Filtration of characteristic parameters第84-85页
        4.3.2 Select the structure of Hidden Markov Model第85-86页
        4.3.3 Classify fatigue lane departure recognition model第86页
        4.3.4 Training model第86-89页
        4.3.5 Model test第89-91页
    4.4 Model verification第91-92页
    4.5 Chapter summary第92-95页
CHAPTER 5: THE IMPACT OF CHARACTERISTIC PARAMETERS AND MODELBUILDING METHOD ON THE EFFECT OF RECOGNITION第95-111页
    5.1 Recognize fatigue lane departure state based on Support Vector Machine第95-102页
        5.1.1 Support Vector Machine’s basic idea第95-100页
        5.1.2 Steps to recognize fatigue lane departure based on support vector machine第100-102页
    5.2 Driver’s fatigue recognition based on Time Series Analysis of steering wheel anglevelocity (TSA)第102-106页
        5.2.1. The experiment and data collection method第102-103页
        5.2.2 Specific expressions of the state of fatigue第103-105页
        5.2.3 Model test第105-106页
    5.3 Compare the effect of GM-HMM model to the other model第106-110页
        5.3.1. Compare GM-HMM model to support vector machine model第106-109页
        5.3.2 Compare GM-HMM model to driver fatigue recognition model based on timeseries analysis of steering wheel angle velocity (TSA)第109-110页
    5.4 Chapter summary第110-111页
CHAPTER 6: CONCLUSION第111-115页
    6.1 Work summary第111-113页
    6.2 Innovation result第113页
    6.3 Research prospects第113-115页
REFERENCES第115-125页
APPENDIX 1第125-126页
作者简介及攻读博士期间所取得的科研成果第126-128页
ACKNOWLEDGEMENTS第128页

论文共128页,点击 下载论文
上一篇:轻型客车低频声—固耦合噪声传递路径分析与控制
下一篇:客车车身结构的刚度匹配方法改进与局部精细化设计研究