首页--农业科学论文--园艺论文--瓜果园艺论文--西瓜论文

嫁接与褪黑素在西瓜苗耐钒和低氮胁迫中的作用机制研究

摘要第9-11页
Abstract第11-13页
Abbreviations第14-15页
1 Introduction第15-30页
    1.1 Grafting Modify Ion Accumulation in Horticultural Crops第16-23页
        1.1.1 Vegetable Crops第16-18页
        1.1.2 Fruit Crops第18-23页
    1.2 Mechanism of Rootstocks to Modify Ion Accumulation第23-27页
        1.2.1 Root System Architecture and Ion Uptake第24页
        1.2.2 Transporters and Ion Uptake第24-26页
        1.2.3 Hormones, mi RNAs and Ion Uptake第26-27页
    1.3 Rootstock Limits the Uptake and Transport of Heavy Metals第27-28页
    1.4 Melatonin Improves Abiotic Stress Tolerance of Plants第28-29页
    1.5 Objectives of This Research第29-30页
2 Effect of Grafting on Nitrogen Use Efficiency of Watermelon under Different Levels of Nitrogen Supply第30-47页
    2.1 Materials and Methods第30-34页
        2.1.1 Plant Material and Treatments第30-31页
        2.1.2 Plant Growth第31-32页
        2.1.3 SPAD Index (Relative Chlorophyll Content)第32页
        2.1.4 Nitrogen Use Efficiency第32页
        2.1.5 Leaf Microscopy Analysis第32页
        2.1.6 Ion Analysis第32-33页
        2.1.7 Cytokinin Analysis第33页
        2.1.8 RNA Extraction and Gene expression Analysis第33-34页
        2.1.9 Statistical Analysis第34页
    2.2 Results第34-43页
        2.2.1 Plant growth第34页
        2.2.2 SPAD Index and Leaf Structure第34-37页
        2.2.3 Mineral Nutrition第37-41页
        2.2.4 N Uptake and N Use Efficiency第41-42页
        2.2.5 Cytokinin Content第42页
        2.2.6 Nitrate Reductase Gene Expression第42-43页
    2.3 Discussion第43-46页
    2.4 Conclusion第46-47页
3 Genome-wide Expression Profiling of Leaves and Roots of Watermelon in Response to Low Nitrogen第47-73页
    3.1 Materials and Methods第48-51页
        3.1.1 Plant Material and Treatments第48页
        3.1.2 Plant Growth, Nitrogen and Photosynthetic Parameters第48页
        3.1.3 Transcriptome Analysis第48-50页
            3.1.3.1 RNA extraction第48-49页
            3.1.3.2 Library preparation for transcriptome sequencing第49页
            3.1.3.3 Clustering and sequencing第49页
            3.1.3.4 Quality control第49页
            3.1.3.5 Reads mapping to the reference genome第49-50页
            3.1.3.6 Quantification of gene expression第50页
            3.1.3.7 Differential gene expression analysis第50页
            3.1.3.8 GO and KEGG enrichment analysis of differentially expressed genes第50页
        3.1.4 Validation of RNA-seq by qRT-PCR第50-51页
    3.2 Results第51-66页
        3.2.1 Response to Growth and Physiological Traits第51-55页
            3.2.1.1 Plant growth第51-53页
            3.2.1.2 Photosynthetic assimilation第53-55页
        3.2.2 Nitrogen Concentration in Different Plant Parts第55页
        3.2.3 Transcriptome Responses to Low N第55-65页
            3.2.3.1 Overview of the RNA sequencing data第55-56页
            3.2.3.2 Analysis of differentially expressed genes (DEGs)第56-62页
            3.2.3.3 Nitrate transporters gene expression第62页
            3.2.3.4 Cytokinin, chlorophyll and photosynthesis gene expression第62-65页
            3.2.3.5 Identification of low N-responsive transcription factors (TFs)第65页
        3.2.4 Quantitative Real?time PCR for RNA-seq Data Validation第65-66页
    3.3 Discussion第66-72页
        3.3.1 DEGs in the Leaf第67-68页
        3.3.2 DEGs in the Root第68-69页
        3.3.3 Cytokinin and Nitrate Reductase Gene Expression第69-70页
        3.3.4 The Five Main Families of Transcription Factors (TFs) Responding to Low N第70-72页
    3.4 Conclusion第72-73页
4 Assessment of Melatonin Application on Root Growth and Nitrogen Uptake of Watermelon第73-80页
    4.1 Materials and Methods第73-74页
        4.1.1 Plant Material and Treatments第73-74页
        4.1.2 Root Morphology and Nitrogen Analysis第74页
        4.1.3 Statistical analysis第74页
    4.2 Results第74-76页
        4.2.1 Root Morphology第74-76页
        4.2.2 Nitrogen Concentration第76页
    4.3 Discussion第76-79页
    4.4 Conclusion第79-80页
5 Effect of Melatonin Pretreatment on Vanadium Stress Tolerance of Watermelon第80-98页
    5.1 Materials and Methods第80-83页
        5.1.1 Plant Material and Treatments第80-81页
        5.1.2 Plant Growth第81-82页
        5.1.3 SPAD Index and Leaf Photosynthetic Parameters第82页
        5.1.4 Root Morphology第82页
        5.1.5 Ion Analysis第82页
        5.1.6 Antioxidant System Analysis第82-83页
        5.1.7 RNA Extraction and Gene Expression Analysis第83页
        5.1.8 Statistical Analysis第83页
    5.2 Results第83-93页
        5.2.1 Plant Growth第83-85页
        5.2.2 Root Morphology第85页
        5.2.3 SPAD Index and Leaf Photosynthetic Parameters第85-86页
        5.2.4 Vanadium and Phosphorus Concentration of Leaf, Stem, and Root第86-87页
        5.2.5 Hydrogen Peroxide (H2O2) and Malondialdehyde (MDA) Contents第87-88页
        5.2.6 Superoxide Dismutase (SOD) and Catalase (CAT) Activities…第88-89页
        5.2.7 Relative Gene Expression第89-93页
    5.3 Discussion第93-97页
        5.3.1 Melatonin Improves SPAD Index and Photosynthetic Assimilation第93-94页
        5.3.2 Melatonin Improves Root Morphology第94页
        5.3.3 Melatonin Reduces the Shoot V Concentration第94-95页
        5.3.4 Melatonin Activates the Antioxidant System and Improves V Stress Tolerance.第95-97页
    5.4 Conclusion第97-98页
6 Impacts of Bottle Gourd and Pumpkin Rootstock on Vanadium Stress Tolerance of Watermelon第98-116页
    6.1 Materials and Methods第98-99页
        6.1.1 Plant Materials and Treatments第98页
        6.1.2 Root Morphology and Scanning Electron Microscopy (SEM) of Root Tips第98-99页
    6.2 Results第99-110页
        6.2.1 Grafting Improves Plant Growth of Watermelon第99-101页
        6.2.2 Grafting Improves Photosynthetic Assimilation第101-102页
        6.2.3 Root Morphology and Scanning Electron Microscopy (SEM) of Root Tips第102-105页
        6.2.4 Grafting Reduces Vanadium and Improves Phosphorus Concentration of Leaves第105-107页
        6.2.5 Grafting Regulates the Antioxidant System第107-108页
        6.2.6 Grafting Regulates Gene Expression第108-110页
    6.3 Discussion第110-115页
        6.3.1 Grafting Improves V Stress Tolerance by Enhancing Plant Growth, Chlorophyll Content and Photosynthetic Assimilation第110-112页
        6.3.2 Grafting Improves V Stress Tolerance by Decreasing V and Increasing P Concentration in Leaf第112-113页
        6.3.3 Grafting Improves V Stress Tolerance by Enhancing the SOD and CAT Activities and Regulating the Expression of Antioxidant Enzymes-Related Genes第113-115页
    6.4 Conclusion第115-116页
7 Summary and Future Perspectives第116-118页
References第118-134页
Appendices第134-141页
List of Publications第141-142页
Acknowledgements第142-144页

论文共144页,点击 下载论文
上一篇:钼对冬小麦抗旱能力及其抗旱信号转导的调控
下一篇:干扰素-τ通过bta-miR-145/204调节妊娠早期奶牛子宫内膜BoLA-Ⅰ的表达和功能研究