首页--数理科学和化学论文--力学论文--爆炸力学论文--爆震(爆轰)理论论文

A Research on Reactive Flow Modeling for Single And Double Shock Initiation of Solid Heterogeneous Explosives By

ACKNOWLEDGEMENTS第7-9页
EPIGRAPH第9-10页
ABSTRACT第10-12页
CHAPTER 1. INTRODUCTION AND BACKGROUND第24-56页
    1.1 Motivation第24-25页
    1.2 Originality of the research第25-26页
    1.3 Objectives of the research第26-27页
    1.4 Shock initiation modeling: an overview第27-31页
        1.4.1 Empirical relation for shock initiation of explosives第28-29页
        1.4.2 Significance of hot spots in shock initiation第29-31页
    1.5 Shock initiation mechanisms第31-35页
        1.5.1 Pore collapse第33-34页
        1.5.2 Shear banding第34-35页
        1.5.3 Frictional heating第35页
    1.6 Factors affecting the shock sensitivity第35-38页
        1.6.1 Density (or porosity)第35-36页
        1.6.2 Grain size effects第36-37页
        1.6.3 Initial temperature第37-38页
    1.7 Reactive burn models第38-48页
        1.7.1 Continuum-based reactive burn models第39-45页
        1.7.2 Physics-based shock initiation models第45-47页
        1.7.3 Hybrid models第47-48页
    1.8 Double shock initiation and desensitization phenomena第48-52页
        1.8.1 Modeling desensitization using continuum based models第50-51页
        1.8.2 Modeling desensitization using physics based models第51-52页
    1.9 Methodology of the current research第52-53页
    1.10 Thesis structure第53-56页
CHAPTER 2. MODELING SINGLE SHOCK IGNITION AND GROWTH OF REACTION IN PBXC03 EXPLOSIVE WITH DIFFERENT CONSTITUENT GRAIN SIZES ANDPOROSIITIES第56-82页
    2.1 Introduction第56页
    2.2 Grain size effect on shock initiation of explosives第56-71页
        2.2.1 Ignition and growth reactive flow modeling for different grain sizes . 362.2.2 Experimental details第59-61页
        2.2.2 Experimental details第61-63页
        2.2.3 Ignition and growth reactive flow modeling for PBXC03第63-67页
        2.2.4 Results and discussion第67-71页
    2.3 The influence of porosity on shock initiation of explosives第71-80页
        2.3.1 Concept of porosity in some shock initiation models第72-73页
        2.3.2 Ignition and growth reactive flow modeling for PBXC03第73-75页
        2.3.3 Results and discussion第75-80页
    2.4 Summary第80-82页
CHAPTER 3. IGNITION AND GROWTH MODELING OF EXPLOSIVES WITHMODIFIED REACTION RATE EQUATION第82-96页
    3.1 Introduction第82页
    3.2 Reaction rate equation第82-86页
        3.2.1 The growth of reaction第83-85页
        3.2.2 Murphy’s RR equation第85-86页
        3.2.3 The present approach第86页
    3.3 Simulation Details第86-88页
        3.3.1 Implementation of the RR equations in LS-DYNA第86-87页
        3.3.2 Simulation Setup第87-88页
    3.4 Results and discussion第88-95页
        3.4.1 Modeling Composition B第88-92页
        3.4.2 Modeling PBXC03第92-95页
    3.5 Summary第95-96页
CHAPTER 4. DESENSITIZATION BY PRESHOCKING IN HETEROGENEOUSEXPLOSIVES AND ITS NUMERICAL MODELING第96-118页
    4.1 Introduction第96页
    4.2 Experimental evidence第96-98页
    4.3 Mechanisms responsible for desensitization第98-99页
    4.4 Modeling efforts第99-106页
        4.4.1 Adapting Lee-Tarver Model第100-104页
        4.4.2 The present approach第104-106页
    4.5 Modeling and simulation第106-114页
        4.5.1 Implementation in LS DYNA第106页
        4.5.2 Simulation of double shock experiments第106-112页
        4.5.3 Reflected shock experiments第112-113页
        4.5.4 Detonation quenching第113-114页
    4.6 Results and discussion第114-116页
    4.7 Summary第116-118页
CHAPTER 5. DESENSITIZATION PHENOMENA IN SHAPED CHARGE JETINITIATION OF EXPLOSIVES第118-136页
    5.1 Introduction第118-119页
    5.2 Significance of desensitization phenomena第119-120页
    5.3 Numerical modeling of the shaped charge jet initiation experiments第120-122页
    5.4 Results and discussion第122-133页
        5.4.1 Target explosive covered by metal barrier plates第122-129页
        5.4.2 Target explosive with air gap第129-133页
    5.5 Summary第133-136页
CHAPTER 6. MODELING DESENSITIZATION IN HETEROGENEOUS EXPLOSIVESBY USING A MESOSCOPIC REACTION RATE MODEL第136-154页
    6.1 Introduction第136-138页
    6.2 DZK reaction rate model第138-141页
    6.3 Modeling and simulation第141-145页
        6.3.1 Computational model第141-144页
        6.3.2 Simulation setup第144-145页
    6.4 Results and discussion第145-151页
        6.4.1 Double shock experiments第145-149页
        6.4.2 Reflected shock experiments第149-150页
        6.4.3 Detonation quenching第150-151页
    6.5 Summary第151-154页
CHAPTER 7. FINAL CONCLUSIONS AND FUTURE RESEARCH第154-162页
    7.1 Final Conclusions第154-158页
        7.1.1 Single shock initiation第154-156页
        7.1.2 Double shock initiation第156-158页
    7.2 Innovative features of the current research第158页
    7.3 Future research第158-162页
        7.3.1 Single shock initiation modeling第159页
        7.3.2 Double shock initiation modeling第159-162页
APPENDIX-A第162-164页
APPENDIX-B第164-172页
APPENDIX-C第172-174页
RFERENCES第174-186页
LIST OF PUBLICATIONS第186-187页

论文共187页,点击 下载论文
上一篇:Spt4:Spt5结合DNA以及抗体E9结合ErbB2的结构生物学研究
下一篇:比例时滞Volterra积分方程及美式期权定价问题的数值方法研究