首页--天文学、地球科学论文--地质、矿产普查与勘探论文--遥感勘探论文

基于新型遥感数据的典型地质环境信息智能识别

作者简历第8-11页
摘要第11-14页
Abstract第14-17页
Chapter 1 General introduction第21-36页
    1.1 Definitions of some crucial terms第21-23页
        1.1.1 Typical geo-environmental information第21页
        1.1.2 New remote sensing data第21-23页
        1.1.3 Intelligent identification第23页
    1.2 Background and motivation第23-24页
    1.3 Detailed descriptions about the intelligent identification of TGEI using NRSD第24-31页
        1.3.1 Forested landslide detection in bedrock-covered mountains with steep and rugged terrain第25-26页
        1.3.2 LCM in CSMAL第26-28页
        1.3.3 LCC in GDES of inland arid regions第28-31页
    1.4 Research objectives第31页
    1.5 The key scientific issues第31-32页
    1.6 Structure of the dissertation第32-36页
Chapter 2 Study areas第36-40页
    2.1 Introduction第36页
    2.2 The Three Gorges region of central China for forested landslide detection第36-37页
    2.3 Wuhan City of central China for LCM in CSMAL第37-38页
    2.4 Dunhuang Basin of northwestern China for LCC in GDEs of inland arid region第38-40页
Chapter 3 Data and methods第40-61页
    3.1 Data sources and pre-processing第40-42页
        3.1.1 Airborne LiDAR data第40-41页
        3.1.2 ZY-3 stereo satellite imagery第41-42页
        3.1.3 RapidEye satellite imagery第42页
    3.2 Feature calculation第42-54页
        3.2.1 Pixel-based LiDAR derivatives第42-48页
        3.2.2 Image segmentation and object-based LiDAR derivatives第48-52页
        3.2.3 ZY-3 image features第52-53页
        3.2.4 RapidEye image features第53-54页
    3.3 Classification scheme development第54-56页
        3.3.1 Classification scheme for landslide identification第54页
        3.3.2 Two-level classification schemes for LCC in CSMAL第54-55页
        3.3.3 Classification scheme for LCC in GDEs of inland arid region第55-56页
    3.4 Training set acquisition第56页
    3.5 Feature reduction第56-58页
        3.5.1 Feature selection methods第57页
        3.5.2 Feature extraction methods第57-58页
    3.6 Classification model development and parameter optimization第58-59页
    3.7 Test set acquisition第59页
    3.8 Classification accuracy assessment第59页
    3.9 Landslide recognition and assessment第59-61页
        3.9.1 Pixel-based landslide recognition and assessment第59-60页
        3.9.2 Object-based landslide recognition and assessment第60-61页
Chapter 4 Forested landslide detection in the Three Gorges region第61-76页
    4.1 Pixel-based forested landslide detection第61-67页
        4.1.1 The utilized methods第61-62页
        4.1.2 Acquisition of feature subset第62页
        4.1.3 Classification accuracy assessment and analysis第62-64页
        4.1.4 Accuracy assessment and analysis of the cross training and classification第64-65页
        4.1.5 Delineation of landslide boundaries第65页
        4.1.6 Conclusions第65-67页
    4.2 Object-based forested landslide detection第67-74页
        4.2.1 The utilized methods第67-68页
        4.2.2 Image segmentation result第68-70页
        4.2.3 Acquisition of object feature subset第70-71页
        4.2.4 Classification accuracy assessment第71-72页
        4.2.5 Landslide inventory map and accuracy assessment第72-74页
        4.2.6 Conclusions第74页
    4.3 Brief summary第74-76页
Chapter 5 LCC in a complex mixed surfaced-mined and agriculturallandscape第76-97页
    5.1 The utilized methods第76-78页
    5.2 Results第78-89页
        5.2.1 Acquisition of feature subset第78-80页
        5.2.2 Parameter optimization of MLAs第80-81页
        5.2.3 Evaluation and comparative analysis of the classification results第81-89页
    5.3 Discussion第89-94页
        5.3.1 The effectiveness of the employed features第89-90页
        5.3.2 Influences of sampling design for training sets, FS method, and the size of test set, and comparison of MLAs第90-94页
    5.4 Conclusions第94-97页
Chapter 6 Land cover classification in an arid region第97-110页
    6.1 LCC in inland arid region and effects of red-edge band and vegetation indices第97-102页
        6.1.1 The utilized methods第97页
        6.1.2 The result of LCC第97-98页
        6.1.3 Effects of red-edge band and vegetation indices第98-102页
        6.1.4 Conclusions第102页
    6.2 Comparison and integration of feature selection and feature extraction methods for LCC第102-110页
        6.2.1 The utilized methods第102-104页
        6.2.2 Results of feature selection and feature extraction第104-105页
        6.2.3 Comparison of feature reduction methods第105-107页
        6.2.4 Integration of feature selection and feature extraction methods第107-108页
        6.2.5 Conclusions第108-110页
Chapter 7 Concluding remarks第110-112页
    7.1 Conclusions第110-111页
    7.2 Future work第111-112页
Acknowledgements第112-113页
References第113-129页

论文共129页,点击 下载论文
上一篇:基于多源数据和多尺度分析的滑坡易发性评价方法研究
下一篇:地形自适应的高精度河网提取及其典型应用