基于支持向量机的复合草图形状识别方法
中文摘要 | 第1-3页 |
ABSTRACT | 第3-6页 |
第一章 绪论 | 第6-10页 |
·研究背景 | 第6-7页 |
·研究目的 | 第7-8页 |
·本文工作 | 第8-9页 |
·文章结构 | 第9-10页 |
第二章 草图识别概述 | 第10-18页 |
·简单草图形状识别 | 第10-15页 |
·笔划预处理 | 第11-12页 |
·简单草图形状识别 | 第12-15页 |
·复合草图形状识别 | 第15-17页 |
·基于相似度的方法 | 第16页 |
·基于分类器的方法 | 第16-17页 |
·存在的问题 | 第17-18页 |
第三章 SVM理论基础 | 第18-25页 |
·线性学习器 | 第18-20页 |
·核函数特征空间 | 第20-21页 |
·泛化性理论 | 第21-25页 |
第四章 基于DAGSVM的草图识别 | 第25-39页 |
·SVM分类器 | 第25-28页 |
·训练SVM分类器 | 第28-32页 |
·多类SVM分类器 | 第29-30页 |
·分类器参数选择 | 第30-32页 |
·复合草图形状表示方法 | 第32-39页 |
·简单草图形状之间关系 | 第33-35页 |
·复合草图形状描述 | 第35-39页 |
第五章 实验验证 | 第39-45页 |
·简单草图形状分类 | 第39-41页 |
·草图形状归整 | 第41页 |
·复合草图形状分类 | 第41-44页 |
·小结 | 第44-45页 |
第六章 总结与展望 | 第45-46页 |
·总结 | 第45页 |
·进一步工作 | 第45-46页 |
参考文献 | 第46-51页 |
发表论文和科研情况说明 | 第51-52页 |
致谢 | 第52页 |