数字图像修复算法的研究
致谢 | 第1-8页 |
摘要 | 第8-9页 |
ABSTRACT | 第9-11页 |
插图清单 | 第11-12页 |
第一章 绪论 | 第12-16页 |
·研究背景及其意义 | 第12-13页 |
·研究现状 | 第13-15页 |
·本文主要工作及章节安排 | 第15-16页 |
第二章 经典的图像修复算法简述 | 第16-26页 |
·基于结构的图像修复算法 | 第16-22页 |
·BSCB (偏微分)模型 | 第16-18页 |
·TV 模型 | 第18-20页 |
·CDD 模型 | 第20-22页 |
·基于纹理的图像修复算法 | 第22-24页 |
·数字图像修复算法的评价 | 第24-25页 |
·主观评价方法 | 第24页 |
·客观评价方法 | 第24-25页 |
·本章小结 | 第25-26页 |
第三章 一种改进的 TV 模型的图像修复算法 | 第26-36页 |
·TV 模型的公式推导 | 第26-31页 |
·改进的算法 | 第31-33页 |
·改进算法的思想 | 第31-32页 |
·改进算法的步骤 | 第32-33页 |
·实验结果与比较 | 第33-36页 |
第四章 一种基于改进优先级的自适应图像修复算法 | 第36-52页 |
·Criminisi 算法中存在的问题 | 第36-40页 |
·优先级中存在的问题及其改进办法 | 第36-39页 |
·Criminisi 算法中样本块选取问题 | 第39-40页 |
·改进的算法 | 第40-44页 |
·优先级改进 | 第40-41页 |
·自适应样本块的选取 | 第41-44页 |
·算法步骤 | 第44页 |
·实验结果 | 第44-51页 |
·本章小结 | 第51-52页 |
第五章 总结与展望 | 第52-54页 |
·全文总结 | 第52页 |
·展望 | 第52-54页 |
参考文献 | 第54-57页 |
攻读硕士学位期间发表的论文 | 第57-58页 |