特征选择方法对英文作文自动评分性能影响的研究
摘要 | 第1-4页 |
Abstract | 第4-8页 |
第一章 引言 | 第8-12页 |
·本文研究的背景和意义 | 第8-9页 |
·本文的创新之处 | 第9-10页 |
·本文的工作任务 | 第10页 |
·本文的组织结构 | 第10-12页 |
第二章 自动作文评分及本文的实现 | 第12-21页 |
·自动作文评分的概述 | 第12-14页 |
·自动作文评分的工作原理 | 第12页 |
·自动作文评分的流程 | 第12-13页 |
·自动作文评分的优点 | 第13-14页 |
·自动作文评分的发展状况 | 第14-17页 |
·国外发展现状 | 第14-16页 |
·国内发展现状 | 第16-17页 |
·相关自动作文评分的比较 | 第17-18页 |
·本文的实现 | 第18-19页 |
·本章小结 | 第19-21页 |
第三章 英文作文的特征提取与表示 | 第21-31页 |
·英文作文特征的提取方法 | 第21-24页 |
·TF-IDF | 第21-22页 |
·IG | 第22-23页 |
·CHI | 第23-24页 |
·英文作文的表示及划分 | 第24-30页 |
·本章小结 | 第30-31页 |
第四章 Boosting 算法在作文评分中的应用 | 第31-48页 |
·分类器介绍 | 第31-41页 |
·模式识别与分类器技术简介 | 第31-32页 |
·K 近邻 | 第32-33页 |
·朴素贝叶斯 | 第33-36页 |
·支持向量机 | 第36-39页 |
·分类器融合概述 | 第39-41页 |
·Boosting 概述 | 第41-42页 |
·AdaBoost 方法 | 第42-44页 |
·实验结果与分析 | 第44-47页 |
·性能评价标准 | 第44-46页 |
·实验结果 | 第46-47页 |
·本章小结 | 第47-48页 |
第五章 线性回归应用于作文自动评分 | 第48-56页 |
·一元线性回归 | 第48-51页 |
·相关系数 | 第49-50页 |
·方差分析和F 检验 | 第50页 |
·残差分析 | 第50-51页 |
·多元线性回归 | 第51-53页 |
·实验结果 | 第53-54页 |
·本章小结 | 第54-56页 |
第六章 总结与展望 | 第56-58页 |
·论文总结 | 第56页 |
·研究展望 | 第56-58页 |
参考文献 | 第58-62页 |
攻读学位期间公开发表的论文 | 第62-63页 |
致谢 | 第63页 |