首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

复杂环境中车辆图像分割与识别方法研究

摘要第6-7页
Abstract第7页
1 INTRODUCTION第11-14页
    1.1 Challenges and goal第12页
    1.2 Thesis contributions第12页
    1.3 Organization of the work第12-14页
2 IMAGE SEGMENTATION AND RECOGNITION’S BACKGROUND第14-26页
    2.1 Region based image segmentation method第14-15页
    2.2 Edge based image segmentation method第15页
    2.3 Image segmentation method based on mathematical morphology第15-16页
    2.4 Image segmentation method based on Fuzzy Theory第16页
    2.5 Image segmentation method based on Neural Network (NN)第16-17页
    2.6 Image segmentation method based on support vector machine (SVM)第17-18页
    2.7 Image segmentation method based on graph theory第18-19页
    2.8 Image segmentation method based on immune algorithm第19-20页
    2.9 Image segmentation method based on Granular Computing Theory第20-21页
    2.10 The Region Based Convolutional Neural networks第21-26页
3 METHODS FOR THE CLASSIFICATION AND THE SEGMENTATION第26-41页
    3.1 Convolutional Neural Networks第26-35页
        3.1.1 Architecture of the CNN第26-30页
        3.1.2 The back-propagation Algorithm第30-35页
    3.2 Data clustering methods for segmentation第35-39页
        3.2.1 K-means clustering第36-37页
        3.2.2 Fuzzy C-means clustering第37-39页
    3.3 Implementation tools第39-40页
    3.4 Summary第40-41页
4 EXPERIMENTATIONS AND RESULTS第41-53页
    4.1 Training and testing Dataset preparation第41-43页
        4.1.1 Labeling of the grayscale images dataset第41-42页
        4.1.2 Data preparation to fed the network第42-43页
    4.2 Presentation of the network’s architecture第43-47页
        4.2.1 Different layers第43-46页
        4.2.2 The general architecture of the CNN第46-47页
    4.3 The training process第47页
        4.3.1 Initialization of the network第47页
        4.3.2 Batches training第47页
    4.4 Testing process第47-48页
    4.5 Combining the CNN and the Fuzzy C-means第48-49页
        4.5.1 Classification with the CNN第48页
        4.5.2 The segmentation with the Fuzzy C-means第48页
        4.5.3 The bounding box第48-49页
    4.6 Results of the experimentations第49-51页
        4.6.1 Training and testing Batch of different sizes第49-50页
        4.6.2 Applying the Fuzzy C-means for segmentation第50-51页
        4.6.3 Final result第51页
    4.7 Summary第51-53页
5 Conclusion and Future work第53-55页
References第55-60页
Scientific Research Published During His Master’s Degree Study第60-61页
Acknowledgement第61-62页

论文共62页,点击 下载论文
上一篇:基于非参数估计的均值-绝对偏差和均值-下半绝对偏差投资组合模型的研究
下一篇:高职院校办学特点的比较研究--以美国社区学院、日本短期大学和中国民办高职院校为例