首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--群论论文--李群论文

高一秩量子群的公理化递归构造与Jacobson-Witt代数的量子化

摘要第1-8页
Abstract第8-12页
引言第12-21页
   ·研究背景第12-18页
   ·记号约定与基本定义第18-21页
第一章 整体量子群的递归构造第21-39页
   ·Hopf 双模第21-23页
   ·余张量余代数第23-24页
   ·量子拟对称代数第24-27页
     ·量子群上三角部分的实现第25-26页
     ·量子群的整体实现第26-27页
   ·高一秩量子群的递归构造第27-39页
     ·余张量 Hopf 代数T_T~c(N)的构造第27-30页
     ·递归构造第30-39页
第二章 U_q(sl_(n+1))的匹配实现第39-57页
   ·量子微分算子,量子Weyl代数第39-42页
   ·U_q(gl_n)的量子微分算子实现第42-45页
   ·U_q(sl_(n+1))的单根向量的量子微分算子实现第45-49页
   ·复合量子根向量的量子微分算子实现第49-57页
     ·Lusztig对称第50-51页
     ·q-括号第51-54页
     ·复合量子根向量的实现第54-57页
第三章 Jacobson-Witt代数W(n)的量子化第57-70页
   ·W(n)的每个分次上的模结构第57-58页
   ·W_l的最低权向量的量子类比第58-66页
   ·W(n)的量子化第66-70页
第四章 A型量子广义射影表示第70-95页
   ·广义射影表示第70-72页
   ·量子广义射影表示的构造第72-85页
   ·U_q(sl_(n+1))—模A_q(?)V不可约的等价条件第85-95页
     ·不可约性第85-88页
     ·等价条件第88-95页
参考文献第95-102页
致谢第102-104页
研究生期间发表论文目录第104页

论文共104页,点击 下载论文
上一篇:天变,道亦变:晚清宇宙论之转变
下一篇:特殊函数论中若干问题的研究