摘要 | 第1-7页 |
ABSTRACT | 第7-12页 |
CHAPTER 1 INTRODUCTION | 第12-26页 |
·RESEARCH PURPOSE AND SIGNIFICANCE | 第13-15页 |
·MOTION ANALYSIS AND BEHAVIOR RECOGNITION IN VIDEO DATA | 第15-18页 |
·Motion Analysis | 第15-17页 |
·Behavior Recognition | 第17-18页 |
·DESIGN ISSUES IN VISUAL ANALYSIS FOR BEHAVIOR MODELING | 第18-19页 |
·ABNORMAL BEHAVIOR DETECTION IN SURVEILLANCE SYSTEMS | 第19页 |
·CONTEXT-SPECIFIC CHALLENGES IN ABNORMAL BEHAVIOR DETECTION | 第19-22页 |
·Ambiguity of Definition | 第20-21页 |
·Noisy Data | 第21页 |
·Behavior Complexity | 第21-22页 |
·Limitation of Training Data | 第22页 |
·APPROACHES TO ABNORMAL BEHAVIOR DETECTION | 第22-24页 |
·THESIS ORGANIZATION | 第24-26页 |
CHAPTER 2 BEHAVIOR REPRESENTATION | 第26-40页 |
·BEHAVIOR REPRESENTATION METHODS | 第26页 |
·FEATURES FOR BEHAVIOR REPRESENTATION | 第26-27页 |
·CROWD FLOW: AN APERIODIC DYNAMICAL SYSTEM | 第27-28页 |
·OPTICAL FLOW | 第28-30页 |
·POTENTIALS: INCOMPRESSIBLE AND IRROTATIONAL FLOW COMPONENTS | 第30-31页 |
·FINITE TIME LYAPUNOV EXPONENT (FTLE) | 第31-33页 |
·NOVEL DESCRIPTOR FOR MODELING CROWD DYNAMICS | 第33-34页 |
·FEATURE EXTRACTION FROM CROWD BEHAVIOR DATASET | 第34-38页 |
·SUMMARY | 第38-40页 |
CHAPTER 3 BEHAVIOR PROFILING FROM BIO-INSPIRED CODEBOOKS | 第40-55页 |
·SEMANTIC REPRESENTATION: FROM FEATURES TO VISUAL CODEBOOK | 第40-41页 |
·Clustering and Clustering Algorithms | 第41-47页 |
·Conventional k-means Clustering | 第42-43页 |
·Nature Inspired Heuristics: Ants Clustering | 第43-47页 |
·Building a Visual Codebook Using Ant-Kmeans Co-clustering | 第47页 |
·EXPERIMENTS | 第47-53页 |
·Description of Datasets | 第47-53页 |
·Pre-processing and Feature Extraction | 第48-49页 |
·Feature Quantization and Codebook Formation | 第49-53页 |
·ANALYSIS OF RESULTS | 第53页 |
·Summary | 第53-55页 |
CHAPTER 4 STATISTICAL MACHINE LEARNING FOR BEHAVIOR RECOGNITION | 第55-72页 |
·INTRODUCTION | 第55页 |
·BAYESIAN STATISTICAL MACHINE LEARNING | 第55-58页 |
·Modeling with the Exponential Family of Distributions | 第56-58页 |
·Maximum Likelihood Estimation | 第58页 |
·MAXIMUM A POSTERIORI ESTIMATE | 第58-59页 |
·THE DIRICHLET DISTRIBUTION | 第59-61页 |
·EXPECTATION MAXIMIZATION (EM) ESTIMATION FROM COUNTS | 第61-62页 |
·DISCOVERY OF BEHAVIOR PATTERNS USING TOPIC MODELS | 第62-65页 |
·Topic Decomposition and Document Generation using Video Data | 第63-65页 |
·LATENT DIRICHLET ALLOCATION (LDA) TOPIC MODEL | 第65-69页 |
·Model Parameters | 第66-68页 |
·Hyper-parameter and Posterior Distribution Estimation | 第68-69页 |
·APPLICATION TO CROWD DATASET | 第69-70页 |
·SUMMARY | 第70-72页 |
CHAPTER 5 CONTEXTUAL ANOMALY DETECTION | 第72-98页 |
·ANOMALY DETECTION: LOCAL OBSERVATION TO GLOBAL INFERENCE | 第72-73页 |
·DESCRIPTION OF ABNORMAL BEHAVIOR DATASETS | 第73-74页 |
·EVALUATING THE BINARY DECISION PROBLEM | 第74-75页 |
·EXPERIMENTS FOR EARLY DETECTION OF ABNORMAL BEHAVIOR | 第75-93页 |
·Type 1 Abnormal Behavior. ‘RUSH’ | 第76-82页 |
·Classification of Frames for Test Clips Using Different Model Parameters | 第79-80页 |
·TYPE 1 Anomaly: Recall-Precision / ROC Analysis for Topic Models and Patch Sizes | 第80-82页 |
·Type 2 Abnormal Behaviors. ‘SCATTER’ | 第82-90页 |
·Classification of Frames for Test Clips using Different Model Parameters | 第85-87页 |
·TYPE 2 Anomalies: Recall-Precision / ROC Analysis for Topic Models and Patch Sizes | 第87-90页 |
·Type 3 Abnormal Behaviors. ‘HERDING’ | 第90-93页 |
·Classification of Frames for Test Clips using Different Topic Models | 第91-92页 |
·TYPE 3 Anomaly: Recall-Precision / ROC Analysis for Topic Models and Patch Sizes | 第92-93页 |
·EFFECT OF PATCH SIZE ON DETECTION ACCURACY FOR ANOMALY TYPES | 第93-96页 |
·Summary | 第96-98页 |
Conclusion | 第98-100页 |
References | 第100-111页 |
Research Publications | 第111-112页 |
Acknowledgements | 第112-113页 |
Appendix | 第113-115页 |