首页--工业技术论文--金属学与金属工艺论文--金属学与热处理论文--金属材料论文--钢论文--特种性能钢论文--不锈钢、耐酸钢论文

Retard the Fatigue Crack Growth of Stainless Steel304with the Application of Nano-material at Crack Tip

Abstract第5页
1 Introduction第9-28页
    1.1 Historical Background第11-12页
    1.2 Literature Review第12页
    1.3 Fatigue第12-13页
    1.4 Crack Initiation第13-15页
    1.5 Crack Propagation第15页
    1.6 Factors Affecting Crack Propagation第15-18页
        1.6.1 Testing parameters第16-17页
        1.6.2 Environment第17页
        1.6.3 Temperature第17页
        1.6.4 Material properties第17-18页
    1.7 Fatigue Crack Propagation Models第18-19页
        1.7.1 Constant Amplitude Loading Models第18-19页
    1.8 Crack Arresting Techniques第19-26页
        1.8.1 Welding第19-20页
        1.8.2 Severe Plastic Deformation (SPD)第20-21页
        1.8.3 Cold-Worked Hole第21-22页
        1.8.4 Shot Peening(SP)第22-23页
        1.8.5 Laser Shock Processing (LSP)第23-24页
        1.8.6 Electro-Magnetic Heat第24-25页
        1.8.7 Drilling Stop Holes and Inserting Pins第25-26页
    1.9 Objective and Scope/Application of Work第26-27页
    1.10 Arrangement of Thesis第27-28页
2 Fatigue Crack Behavior of Stainless Steel 304 by the Addition of Carbon Nano-tubes第28-46页
    2.1 Crack Arrest Mechanism第28页
    2.2 Methodology第28-29页
    2.3 Experiment第29-34页
        2.3.1 Materials第29-31页
        2.3.2 Sample Preparation第31-33页
        2.3.3 Measurement and Methods第33-34页
    2.4 Results and Discussion第34-45页
        2.4.1 Morphology of Laser Treated and Laser Plus MWCNTs Specimens第34-35页
        2.4.2 Fatigue Crack Growth第35-37页
        2.4.3 Microstructure Morphology第37-45页
    2.5 Summary第45-46页
3 Laser Parameters Effect on Fatigue Crack Growth of Stainless steel 304 with theApplication of Carbon Nano-tubes第46-56页
    3.1 Introduction第46页
    3.2 Experiment第46-48页
        3.2.1 Material第46-47页
        3.2.2 Laser Treatment第47页
        3.2.3 Fatigue Crack Growth Test第47-48页
    3.3 Results and Discussions第48-56页
        3.3.1 Laser Power Effect on Fatigue crack growth第48-51页
        3.3.2 Laser Beam Exposure Duration Effect on Fatigue Crack Growth第51-53页
        3.3.3 Fracture Morphology第53-56页
    3.4 Summary第56页
4 A New Conceptual Design of Compact Fatigue CrackArresting Device第56-68页
    4.1 Introduction第57-58页
    4.2 Working Principle of the Fatigue Crack Arresting Gun第58-59页
    4.3 Designing Steps of Crack Arrest Device第59页
        4.3.1 Crack Arresting Device Specifications第59页
        4.3.2 Selection of Crack Arresting Mechanism第59页
    4.4 Methodology第59-61页
    4.5 CAD Model of Crack Arresting Device第61-66页
        4.5.1 Modeling/Geometry第61-66页
    4.6 Discussion第66-67页
    4.7 Summary第67-68页
5 Conclusions第68-70页
Abstract of Innovation Points第70-71页
Reference第71-78页
Appendix A List of Figure第78-80页
Appendix a List of Table第80-81页
Appendix a List of Symbols and Abbreviations第81-83页
Published Academic Paper During PhD Period第83-84页
Acknowledgement第84-85页
About the Author第85-86页
Dalian University of Technology Doctoral Dissertation Copyright Use Authorization第86-87页

论文共87页,点击 下载论文
上一篇:CSTR过程的模型辨识及其非线性预测控制方法研究
下一篇:含氟芳香杂环化合物的不对称氢化及合成研究