首页--工业技术论文--轻工业、手工业论文--食品工业论文--一般性问题论文--食品标准与检验论文--食品分析与检验论文

离子液体包覆磁性纳米粒子磁性固相萃取—光谱法富集分析食品色素

Abstract第8-10页
中文摘要第11-13页
Chapter One Literature Review第13-41页
    1.1. Overview第13页
    1.2. Food pigments第13-14页
    1.3. Magnetic solid phase extraction (MSPE) technology第14-23页
        1.3.1 Iron oxide (Fe_3O_4)第15-16页
        1.3.2 Functional materials loaded Fe_3O_4第16-23页
            1.3.2.1 Inorganic materials loaded Fe_3O_4第16-19页
            1.3.2.2 Polymer materials loaded Fe_3O_4第19-20页
            1.3.2.3 Surfactants loaded Fe_3O_4第20-22页
            1.3.2.4 Ionic liquids loaded Fe_3O_4第22-23页
    1.4 Magnetic solid phase extraction (MSPE) joint technology in different samples analysis第23-24页
    1.5 Methods for Food pigments detection第24-29页
        1.5.1 In chromatography:第25-26页
        1.5.2 In electrochemistry:第26-28页
        1.5.3 Spectrophotometric Methods第28-29页
    1.6 Magnetic solid phase extraction (MSPE) in food pigment analysis:第29-31页
    1.7 This article ideas第31-33页
    References第33-41页
Chapter Two Determination of Rhodamine B Pigment in Food Samples by Ionic Liquid Coated Magnetic Core/ShellFe_3O_4@SiO_2 Nanoparticles Coupled with Fluorescence Spectrophotometry第41-60页
    2.1 Introduction第41-42页
    2.2 Experimental第42-44页
        2.2.1 Equipment and Reagents第42页
        2.2.2 Synthesis of Fe_3O_4@SiO_2@IL第42-43页
        2.2.3 MSPE Procedure第43-44页
        2.2.4 Determination Method第44页
        2.2.5 Sample Preparation第44页
    2.3 Results and discussion第44-59页
        2.3.1 Characterization of the MNPs by FT-IR第44-45页
        2.3.2 Characterization of the MNPs by Thermo-gravimetric analysis (TGA)第45-46页
        2.3.3 Extraction efficiency of different MNPs第46-47页
        2.3.4 Optimization of Adsorption第47-51页
            2.3.4.1 Effect of pH第48页
            2.3.4.2 Effect of Adsorption Temperature and Time第48-50页
            2.3.4.3 Effect of the Sample Volume第50-51页
        2.3.5 Adsorption Capacity第51-52页
        2.3.6 Optimization of Elution第52-54页
            2.3.6.1 Selection of Eluent第52-53页
            2.3.6.2 Eluent Volume第53-54页
            2.3.6.3 Elution Time第54页
        2.3.7 The reusability of Fe_3O_4@SiO_2@IL第54-55页
        2.3.8 Evaluation of Interferents第55-56页
        2.3.9 Analytical Performance of the Method第56页
        2.3.10 Adsorption Mechanism of Fe_3O_4@SiO_2@ILfor Rhodamine B第56-57页
        2.3.11 Sample Analysis第57-58页
        2.3.12 Comparison of the Proposed Method with Relevant Literatures第58-59页
    2.4 Conclusion第59-60页
References第60-62页
Chapter Three Separation/Analysis of Congo Red Using Poly Ionic Liquid Immobilized Magnetic NanoparticlesCoupled with Fluorescence Spectrophotometry第62-33页
    3.1 Introduction第62-64页
    3.2 Experimental section第64-67页
        3.2.1 Reagents and chemicals第64页
        3.2.2 Equipment第64页
        3.2.3 Preparation of poly (ionic liquid) immobilized magnetic nanoparticles (Fe_3O_4@SiO_2@PILs)第64-66页
            3.2.3.1 Preparation of IL monomer第64页
            3.2.3.2 Preparation of Fe_3O_4@SiO_2magnetic nanoparticles第64-65页
            3.2.3.3 Preparation of Fe_3O_4@SiO_2@PIL magnetic nanoparticles第65-66页
        3.2.4 Procedure of extraction第66页
        3.2.5 Sample preparation第66-67页
        3.2.6 Elution procedure第67页
    3.3 Results and discussion第67-80页
        3.3.1 Characterization of Fe_3O_4@SiO_2@PIL第67-70页
            3.3.1.1 Characterization by FTIR第67-68页
            3.3.1.2 Characterization by X-Ray Diffraction (XRD)第68-69页
            3.3.1.3 Thermo-gravimetric analysis (TGA)第69-70页
        3.3.2 Optimization of Adsorption第70-75页
            3.3.2.1 pH value第70-71页
            3.3.2.2 Extraction temperature第71-72页
            3.3.2.3 Extraction time第72-73页
            3.3.2.4 Sample volume第73-74页
            3.3.2.5 Capacity of adsorption第74-75页
        3.3.3 Optimization of Elution第75-76页
            3.3.3.1 Eluent type第75页
            3.3.3.2 Eluent volume第75-76页
            3.3.3.3 Elution time第76页
            3.3.3.4 Elution temperature第76页
        3.3.4 The reusability of Fe_3O_4@SiO_2@PIL第76-77页
        3.3.5 Interferents effect第77页
        3.3.6 Analytical Application第77页
        3.3.7 Analysis of sample第77-78页
        3.3.8 Discussion on Adsorption Mechanism of Fe_3O_4@SiO_2@PIL第78-79页
        3.3.9 Comparison with other methods第79-80页
    3.4 Conclusion第80-33页
References第33-41页
Chapter Four Poly Ionic Liquid Immobilized Magnetic Nanoparticles as Sorbent Coupled with FluorescenceSpectrophotometry for Separation/Analysis ofAllura Red第41-95页
    4.1 Introduction第83-84页
    4.2 Experimental section第84-85页
        4.2.1 Preparation of poly ionic liquid magnetic nanoparticles (Fe_3O_4@SiO_2@PILs)第84页
        4.2.2 Procedure of extraction第84页
        4.2.3 Sample preparation第84页
        4.2.4 Elution procedure第84-85页
    4.3 Results and discussion第85-94页
        4.3.1 Optimization of Adsorption第85-88页
            4.3.1.1 Effect of pH value第85-86页
            4.3.1.2 Adsorption temperature第86页
            4.3.1.3 Extraction time第86页
            4.3.1.4 Sample volume第86-88页
            4.3.1.5 Capacity of adsorption第88页
        4.3.2 Optimization of Elution第88-89页
            4.3.2.1 Eluent type第88-89页
            4.3.2.2 Eluent volume第89页
            4.3.2.3 Elution time第89页
            4.3.2.4 Elution temperature第89页
        4.3.3 The reusability of Fe_3O_4@SiO_2@PIL第89-90页
        4.3.4 Interference effects第90页
        4.3.5 Analytical performance第90-91页
        4.3.6 Analysis of sample第91页
        4.3.7 Comparison with other methods第91-92页
        4.3.8 Discussion of Mechanism第92-94页
    4.4 Conclusion第94-95页
References第95-96页
Chapter Five Determination of Rhodamine B in Food Samples by Fe_3O_4@Ionic Liquids-β-Cyclodextrin CrossLinked Polymer Solid Phase Extraction Coupled With Fluorescence Spectrophotometry第96-113页
    5.1 Introduction第96-97页
    5.2 Experimental第97-98页
        5.2.1 Apparatus and Chemicals第97页
        5.2.2 Synthesis of ILs-β-CDCP第97页
        5.2.3 Synthesis of Fe_3O_44@ ILs-β-CDCP第97-98页
        5.2.4 Adsorption/Elution第98页
        5.2.5 Sample preparation第98页
    5.3 Results and Discussion第98-111页
        5.3.1 Characterization of Fe_3O_4@ILs-β-CDCP第98-102页
            5.3.1.1 Infrared Spectroscopy第98-99页
            5.3.1.2 Scanning Electron Microscopy第99-100页
            5.3.1.3 Characterization by X-Ray Diffraction第100-101页
            5.3.1.4 Thermo gravimetric analysis第101-102页
        5.3.2 Optimization of Adsorption第102-105页
            5.3.2.1 Effect of pH第102-103页
            5.3.2.2 Effect of Extraction Temperature and Time第103页
            5.3.2.3 Effect Sample Volume第103-105页
            5.3.2.4 Adsorption Capacity第105页
        5.3.3 Optimization of Elution第105页
            5.3.3.1 Selection of Eluent第105页
            5.3.3.2 Effect of Eluent Volume第105页
            5.3.3.3 Effect of Elution Time第105页
        5.3.4 Reuse of Fe_3O_4@ILs-β-CDCP第105-106页
        5.3.5 Effect of Interferents第106页
        5.3.6 Analytical performance第106-107页
        5.3.7 Sample Analysis第107-108页
        5.3.8 Adsorption Mechanism of Fe_3O_4@ILs-β-CDCP for Rhodamine B第108-110页
            5.3.8.1 FTIR analysis第108-109页
            5.3.8.2 Inclusion constant第109-110页
        5.3.9 Comparison with other methods第110-111页
    5.4 Conclusion第111页
    References第111-113页
Chapter Six Amino Acid Ionic Liquid Coated Magnetic Core Fe_3O_4SiO_2Nanoparticles Coupled with UVSpectrophotometry for Separation /Analysis of Congo Red第113-130页
    6.1 Introduction第113-114页
    6.2 Experimental第114-115页
        6.2.1 Equipment and reagents第114页
        6.2.2 Preparation of Fe_3O_4@SiO_2 @AAIL第114页
        6.2.3 Extraction procedure第114-115页
        6.2.4 Sample preparation第115页
    6.3 Results and discussion第115-128页
        6.3.1 Characterization of Fe_3O_4@SiO_2@ AAIL第115-117页
            6.3.1.1 Characterization by FTIR第115-116页
            6.3.1.2 Characterization by SEM第116页
            6.3.1.3 Characterization by XRD第116-117页
        6.3.2 Optimization of Adsorption第117-122页
            6.3.2.1 The effect of pH第117-118页
            6.3.2.2 Effect of amount of adsorbent第118-119页
            6.3.2.3 The effect of temperature第119页
            6.3.2.4 The effect of extraction time第119-120页
            6.3.2.5 Effect of ionic strength第120-121页
            6.3.2.6 Effect of the sample volume第121-122页
        6.3.3 Optimization of Elution第122-126页
            6.3.3.1 Eluent selection第122-123页
            6.3.3.2 The effect of eluent volume第123-124页
            6.3.3.3 The effect of elution time第124-125页
            6.3.3.4 The effect of elution temperature第125-126页
        6.3.4 The repeated times of Fe_3O_4@SiO_2@AAIL第126-127页
        6.3.5 Interference experiment第127-128页
        6.3.6 Analytical performance第128页
    6.4 Sample analysis第128-129页
    6.5 Conclusion第129页
    References第129-130页
Chapter Seven Conclusion and Outlook第130-133页
List of Publications第133-134页
Acknowledgements第134-135页

论文共135页,点击 下载论文
上一篇:纤维素/聚(β-羟基丁酸酯)复合材料的结构与性能
下一篇:基于碳纳米管复合材料的电化学传感器在食品药品检测中的应用