首页--数理科学和化学论文--概率论与数理统计论文--概率论(几率论、或然率论)论文--随机过程论文--平稳过程与二阶矩过程论文

时间序列模型的应用研究

摘要第5-6页
Abstract第6页
1 Introduction第10-36页
    1.1 Background第10页
    1.2 A Model Building Strategy第10-11页
    1.3 Time Series Plots In History第11-12页
    1.4 Data Occur Naturally In Many Application Areas第12页
    1.5 Components Of A Time Series第12-13页
    1.6 Types of Time Series Data第13页
    1.7 Goals Of Time Series Analysis第13-14页
    1.8 Time Series Analysis第14-17页
    1.9 Intervention Analysis第17-26页
        1.9.1 The Model Intervention Analysis第22-26页
    1.10 Fundamental Concepts第26-36页
        1.10.1 Time Series And Stochastic Processes第26-27页
        1.10.2 Means,Variances And Covariances第27-28页
        1.10.3 The Random Walk第28-30页
        1.10.4 A Moving Average第30页
        1.10.5 Stationary第30-32页
        1.10.6 White Noise第32页
        1.10.7 Appendix:Expectation,Variance,Covariance And Correlation第32-34页
        1.10.8 Properties Of Covariance第34页
        1.10.9 Properties Of Correlation第34-35页
        1.10.10 The Sample Autocorrelation Function第35-36页
2 The General Auto Regressive Integrated Moving Average Process第36-60页
    2.1 Time Series Analysis Using ARIMA Methods第36-37页
    2.2 The General Autoregressive Process AR(p)第37-41页
        2.2.1 The Autocorrelation Function第38-39页
        2.2.2 The Variance For The AR(P)Model第39页
        2.2.3 Identifying An AR(p)Process第39-41页
    2.3 The General M A(q)Process第41-44页
        2.3.1 The Variance For The M A(q)Model第42页
        2.3.2 The Autocorrelation Function第42-44页
        2.3.3 Identifying An M A(q)Process第44页
    2.4 Define The Mixed Autoregressive Moving Average第44-51页
        2.4.1 The General Mixed Autoregressive Moving Average Model第45页
        2.4.2 The Autocorrelation Function For ARM A(p,q)第45-49页
        2.4.3 Identifying An ARM A(p,q)Process第49-51页
    2.5 Integrated Autoregressive Moving Average ARI M A(p,d,q)第51-60页
        2.5.1 The I M A(1,1)Model第55-56页
        2.5.2 The I M A(2,2)Model第56-57页
        2.5.3 The ARI(1,1)Model第57-58页
        2.5.4 Constant Terms in ARI M A Models第58-60页
3 Parameter Estimation For ARI M A(p,d,q)Model第60-72页
    3.1 Parameter Estimation第60-62页
    3.2 Parameter Estimation Of The General A R(p)Model第62-65页
    3.3 Parameter Estimation of The General M A(q)Process第65-66页
    3.4 Parameter Estimation Of The Mixed Autoregressive Moving Average Model: ARM A(p,q)第66-69页
    3.5 Parameter eter Estimation of The Integrated Autoregressive Moving Av-erage ARI M A(p,d,q)Models第69-72页
4 Box-Jenkins Methodology And Application Time Series Analysis Using ARI M A(p,d,q)In software Minitab第72-100页
    4.1 Box-Jenkins Approach第72页
    4.2 Residual Diagnostic第72-74页
    4.3 Plots Of The Residuals第74页
    4.4 Normality Of The Residual第74-75页
    4.5 Autocorrelation Of The Residuals第75页
    4.6 The Ljung-Box Test第75-78页
    4.7 Forecasting第78-79页
    4.8 Application Time Series Analysis By Using Software Minitab第79-82页
    4.9 Results Analysis第82-100页
        4.9.1 Check Stationary Time Series第82-86页
        4.9.2 Fitting Model Which Representation Second Difference(diff2) Series第86页
        4.9.3 The Identificaton Of ARI M A Model第86页
        4.9.4 Parameters Estimating第86页
        4.9.5 Parameters Estimating For I M A(2,1)Model第86-88页
        4.9.6 Parameters Estimating For ARI(1,2)Model第88-89页
        4.9.7 Parameters Estimating For ARI(2,2)Model第89-91页
        4.9.8 Parameters Estimating For ARI M A(1,2,1)Model第91-92页
        4.9.9 Parameters Estimating For ARI M A(2,2,1)Model第92-96页
        4.9.10 Diagnostic Checking Performed to Obtain the Best Fitted Model第96-97页
        4.9.11 The Forecasting in the Future to Using Integrated Autoregres-sive Moving Average ARI M A(2,2,1)Models第97-100页
5 Conclusions第100-101页
REFERENCES第101-105页
ACKNOWLEDGMENT第105页

论文共105页,点击 下载论文
上一篇:在随机影响模型中纵向数据的分析及应用
下一篇:基于初中语文教材的作文教学策略研究