摘要 | 第1-7页 |
ABSTRACT | 第7-9页 |
第一章 绪论 | 第9-25页 |
·数学回顾 | 第12-15页 |
·模型一的数学结果回顾 | 第12-13页 |
·模型二的数学结果回顾 | 第13-14页 |
·Ginzburg-Landau逼近下一般模型的数学结果回顾 | 第14-15页 |
·液晶动力学方程其他结果 | 第15页 |
·本文主要结论 | 第15-23页 |
·可压缩液晶模型研究 | 第16-19页 |
·不可压缩液晶模型研究 | 第19-23页 |
·本文的安排与创新点 | 第23-25页 |
·本文的安排 | 第23-24页 |
·本文的创新点 | 第24-25页 |
第二章 记号和预备知识 | 第25-28页 |
·记号 | 第25页 |
·预备知识 | 第25-28页 |
第三章 可压缩液晶动力学方程强解的存在性 | 第28-58页 |
·引言与主要结论 | 第28-32页 |
·可压缩Navier-Stokes方程解存在性相关结果 | 第29-30页 |
·主要结果 | 第30-32页 |
·线性问题 | 第32-46页 |
·线性化 | 第32-33页 |
·近似问题解的存在性 | 第33-44页 |
·线性问题(3.11)-(3.13)的局部解 | 第44-46页 |
·迭代和定理3.1存在性的证明 | 第46-54页 |
·定理3.2对初值连续依赖性的证明 | 第54-56页 |
·定理3.3小初值整体解的证明 | 第56-58页 |
第四章 可压缩液晶系统强解的破裂准则 | 第58-77页 |
·引言和主要结论 | 第58-61页 |
·可压缩Navier-Stokes方程解破裂准则回顾 | 第59-61页 |
·主要结果 | 第61页 |
·定理4.2 破裂准则的证明 | 第61-77页 |
·密度ρ的估计 | 第62-64页 |
·能量不等式 | 第64-65页 |
·方向d的估计 | 第65-66页 |
·速度u的估计 | 第66-71页 |
·高阶能量不等式 | 第71-75页 |
·估计‖u‖_H~2,‖d‖_H~3和‖ρ‖_W~(1.6) | 第75-77页 |
第五章 二维不可压缩液晶动力学方程组强解的整体存在性 | 第77-104页 |
·引言和主要结论 | 第77-80页 |
·近似解 | 第80-88页 |
·高阶能量估计 | 第88-95页 |
·定理5.1 整体强解的证明 | 第95-98页 |
·定理5.2 弱强唯一性的证明 | 第98-101页 |
·附录 | 第101-104页 |
第六章 附录:液晶动力学模型推导 | 第104-116页 |
·液晶物理性质 | 第104-106页 |
·液晶动力学方程建立 | 第106-116页 |
·Frank-Oseen自由能 | 第106-108页 |
·向列型液晶静力学方程 | 第108-110页 |
·向列型液晶动力学 | 第110-114页 |
·液晶动力学方程 | 第114-116页 |
参考文献 | 第116-125页 |
攻读博士学位期间已完成的文章 | 第125-127页 |
致谢 | 第127-128页 |